Inventiones mathematicae

, Volume 102, Issue 1, pp 543–618 | Cite as

Nonvanishing theorems for L-functions of modular forms and their derivatives

  • Daniel Bump
  • Solomon Friedberg
  • Jeffrey Hoffstein


Modular Form Nonvanishing Theorem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Atkin, O., Li, W.: Twists of newforms and pseudoeigenvalues ofW-operators. Invent. Math.48, 221–243 (1978)Google Scholar
  2. 2.
    Bump, D.: The Rankin-Selberg method: a survey. To appear in the proceedings of the Selberg Symposium, Oslo (1987)Google Scholar
  3. 3.
    Bump, D., Friedberg, S., Hoffstein, J.: Eisenstein series on the metaplectic group and nonvanishing theorems for automorphicL-functions and their derivatives. Ann. Math.131, 53–127 (1990)Google Scholar
  4. 4.
    Bump, D., Friedberg, S., Hoffstein, J.: A nonvanishing theorem for derivatives of automorphicL-functions with applications to elliptic curves. Bull. Am. Math. Soc. (to appear) (1989)Google Scholar
  5. 5.
    Eichler, M., Zagier, D.: The theory of Jacobi forms. Boston: Birkhäuser 1985Google Scholar
  6. 6.
    Goldfeld, D., Hoffstein, J.: Eisenstein series of 1/2-integral weight and the mean value of real DirichletL-series. Invent. Math.80, 185–208 (1985)Google Scholar
  7. 7.
    Gross, D., Zagier, D.: Heegner points and derivatives ofL-series. Invent. Math.84, 225–320 (1986)Google Scholar
  8. 8.
    Gradshteyn, I., Ryzhik, I.: Table of integrals, series and products. New York: Academic Press 1980Google Scholar
  9. 9.
    Jacquet, H.: Fonctions de Whittaker associcés aux groupes de Chevalley. Bull. Soc. Math. France95, 243–309 (1967)Google Scholar
  10. 10.
    Jacquet, H.: On the nonvanishing of someL-functions. Proc. Ind. Acad. Sci.97, 117–155 (1987)Google Scholar
  11. 11.
    Jacquet, H., Piatetski-Shapiro, I., Shalika, J.: Automorphic forms onGL(3), I, II. Ann. Math.109, 169–258 (1979)Google Scholar
  12. 12.
    Kohnen, W.: Newforms of half-integral weight. J. Reine Angew. Math.333, 32–72 (1982)Google Scholar
  13. 13.
    Kolyvagin, V.: On groups of Mordell-Weil and Shafarevich-Tate and Weil elliptic curves. Preprint, in Russian (1988)Google Scholar
  14. 14.
    Maass, H.: Siegel's Modular Forms and Dirichlet Series. Berlin-Heidelberg. New York: (Lecture Notes in Mathematics, (216). Springer 1971Google Scholar
  15. 15.
    Murty, M.R., Murty, V.K.: Mean values of derivatives of modularL-series. Preprint 1989Google Scholar
  16. 16.
    Novodvorsky, M.: AutomorphicL-functions for the symplectic groupGSp 4. In: Automorphic Forms, Representations andL-functions. AMS Proc. Symp. Pure Math.,33, 2, 87–95 (1979)Google Scholar
  17. 17.
    Ogg, A.: On a convolution ofL-series. Invent. Math.7, 297–312 (1969)Google Scholar
  18. 18.
    Shimura, G.: Introduction to the arithmetic theory of automorphic forms. Iwanami Shoten and Princeton University Press, 1971Google Scholar
  19. 19.
    Waldspurger, J.-L.: Correspondences de Shimura. In: Proceedings of the International Congress of Mathematicians, Warzawa (1983)Google Scholar
  20. 20.
    Waldspurger, J.-L.: Correspondences de Shimura et Quaternions. Preprint 1984Google Scholar
  21. 21.
    Whittaker, E., Watson, G.: A course of Modern Analysis, fourth edition. Cambridge, 1927Google Scholar
  22. 22.
    Ziegler, C.: Jacobi forms of higher degree. Abh. Math. Sem. Univ. Hamburg59, 191–224 (1989)Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • Daniel Bump
    • 1
  • Solomon Friedberg
    • 1
  • Jeffrey Hoffstein
    • 1
  1. 1.Department of mathematicsStanford UniversityStanfordUSA

Personalised recommendations