Advertisement

Inventiones mathematicae

, Volume 102, Issue 1, pp 399–428 | Cite as

On the fundamental periods of automorphic forms of arithmetic type

  • Goro Shimura
Article

Keywords

Automorphic Form Fundamental Period Arithmetic Type 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Eichler, M.: Allgemeine Kongruenzklasseneinteilungen der Ideale einfacher Algebren über algebraischen Zahlkörpern und ihreL-Reihen. J. Reine Angew. Math.179, 227–251 (1938)Google Scholar
  2. 2.
    Eilenberg, S.: Homology of spaces with operators. I. Trans. Am. Math. Soc.61, 378–417 (1947)Google Scholar
  3. 3.
    Matsushima, Y., Shimura, G.: On the cohomology groups attached to certain vector-valued differential forms on the product of the upper half planes. Ann. Math.78, 417–449 (1963)Google Scholar
  4. 4.
    Shimizu, H.: On zeta functions of quaternion algebras. Ann. Math.81, 166–193 (1965)Google Scholar
  5. 5.
    Shimura, G.: On certain zeta functions attached to two Hilbert modular forms I, II. Ann. Math.114, 127–164, 569–607 (1981)Google Scholar
  6. 6.
    Shimura, G.: The periods of certain automorphic forms of arithmetic type. J. Fac. Sci. Univ. Tokyo (Sect. IA)28, 605–632 (1982)Google Scholar
  7. 7.
    Shimura, G.: Algebraic relations between critical values of zeta functions and inner products. Am. J. Math.104, 253–285 (1983)Google Scholar
  8. 8.
    Shimura, G.: On Hilbert modular forms of half-integral weight. Duke Math. J.55, 765–838 (1987)Google Scholar
  9. 9.
    Shimura, G.: On the critical values of certain Dirichlet series and the periods of automorphic forms. Invent. math.94, 245–305 (1988)Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • Goro Shimura
    • 1
  1. 1.Department of MathematicsPrinceton UniversityPrincetonUSA

Personalised recommendations