Inventiones mathematicae

, Volume 102, Issue 1, pp 377–398 | Cite as

Determining representations from invariant dimensions

  • M. Larsen
  • R. Pink


Invariant Dimension 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bourbaki, N.: Groupes et algèbres de Lie. Paris: Masson 1981Google Scholar
  2. 2.
    Dynkin, E.B.: Semisimple subalgebras of semisimple Lie algebras. Am. Math. Soc. Transl. Ser. 2,6, 111–244 (1957)Google Scholar
  3. 3.
    Humphreys, J.E.: Introduction to Lie algebras and representation theory. Berlin-Heidelberg-New York: Springer 1972Google Scholar
  4. 4.
    McKay, W.G., Patera, J.: Tables of dimensions, indices, and branching rules for representations of simple Lie algebras (Lecture Notes in Pure and Applied Math.). New York: Marcel Dekker 1981Google Scholar
  5. 5.
    Peter, F., Weyl, H.: Vollständigkeit der Darstellungen kontinuierlicher Gruppen. Math. Ann.97, 737–755 (1927)Google Scholar
  6. 6.
    Weyl, H.: The classical groups. Princeton, NJ: Princeton University Press 1939Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • M. Larsen
    • 1
  • R. Pink
    • 2
  1. 1.Institute for Advanced StudyPrincetonUSA
  2. 2.Mathematisches Institut, UniversitätBonn 1Federal Republic of Germany

Personalised recommendations