Small cancellation theory and automatic groups
Article
- 271 Downloads
- 45 Citations
Keywords
Automatic Group Small Cancellation Small Cancellation Theory
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Preview
Unable to display preview. Download preview PDF.
References
- [BGSS]Baumslag, G., Gersten, S.M., Shapiro, M., Short, H.: Automatic groups and amalgams. (in preparation)Google Scholar
- [BH]Borel, A., Harder, G.: Existence of discrete cocompact subgroups of reductive groups over local fields. J. Reine Angew. Math.298, 53–64 (1978)Google Scholar
- [BS]Borel, A., Serre, J.-P.: Cohomologie d'immeubles et des groupesS-arithmetiques. Topology15, 211–232 (1976)Google Scholar
- [B]Brown, K.S.: Buildings. Berlin-Heidelberg-New York: Springer 1988Google Scholar
- [BT]Bruhat, F., Tits, J.: Groupes réductifs sur un corps local I. Données radicielles valuées. Publ. Math. Inst. Hautes Etud. Sci.41, 5–251 (1972)Google Scholar
- [C1]Cannon, J.W.: The combinatorial structure of cocompact discrete hyperbolic groups. Geom. Dedicata16, 123–148 (1984)Google Scholar
- [C2]Cannon, J.W.: Negatively Curved Spaces and Groups, Preliminary lecture notes from Topical meeting on hyperbolic geometry and ergodic theory. Trieste (April 1989)Google Scholar
- [CEHPT]Cannon, J.W., Epstein, D.B.A., Holt, D.F., Paterson, M.S., Thurston, W.P.: Word processing and group theory. University of Warwick, 1990 (Preprint)Google Scholar
- [DV]Harpe, P. de la, Valette, A.: La propriété (T) de Kazhdan pour les groupes localement compacts. Astérisgue175 (1989)Google Scholar
- [EP]El-Mosalamy, M., Pride, S.: OnT(6) groups. Math. Proc. Camb. Philos. Soc.102, 443–451 (1987)Google Scholar
- [G]Gersten, S.M.: Reducible diagrams and equations over groups. In: Gersten, S.M. (ed.) Essays in Group Theory (M.S.R.I. series, Vol. 8, pp. 15–73). Berlin-Heidelberg-New York: Springer 1987Google Scholar
- [G2]Gersten, S.M.: Dehn functions andl 1-norms of finite presentations. In: Proceedings of the Workshop on algorithmic Problems C.F. Müller III and G. Baumslag (eds.), Springer-Verlag MSRI series, 1990 (to appear)Google Scholar
- [Gr]Gromov, M.: Hyperbolic groups. In: Gersten, S.M. (ed.) Essays in Group Theory (M.S.R.I. series, Vol. 8, pp. 75–263). Berlin-Heidelberg-New York: Springer 1987Google Scholar
- [HU]Hopcroft, J.E., Ullman, J.D.: Formal languages and their relation to automata. Reading MA: Addison-Wesley 1969Google Scholar
- [L]Lyndon, R.C.: On Dehn's algorithm. Math. Ann.166, 208–228 (1966)Google Scholar
- [LS]Lyndon, R.C., Schupp, P.E.: Combinatorial group theory. Berlin-Heidelberg-New York: Springer 1977Google Scholar
- [P]Pride, S.: Some finitely presented groups of cohomological dimension two with property (FA). J. Pure Appl. Algebra29, 167–168 (1983)Google Scholar
- [Th]Thurston, W.P.: Geometry and topology of 3-manifolds. Preprint Princeton UniversityGoogle Scholar
- [Th2]Thurston, W.P.: Oral communicationGoogle Scholar
- [W]Weinbaum, C.M.: The word and conjugacy problem for the knot group of any prime alternating knot. Proc. Am. Math. Soc.22, 22–26 (1971)Google Scholar
Copyright information
© Springer-Verlag 1990