Inventiones mathematicae

, Volume 102, Issue 1, pp 305–334 | Cite as

Small cancellation theory and automatic groups

  • S. M. Gersten
  • H. B. Short


Automatic Group Small Cancellation Small Cancellation Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [BGSS]
    Baumslag, G., Gersten, S.M., Shapiro, M., Short, H.: Automatic groups and amalgams. (in preparation)Google Scholar
  2. [BH]
    Borel, A., Harder, G.: Existence of discrete cocompact subgroups of reductive groups over local fields. J. Reine Angew. Math.298, 53–64 (1978)Google Scholar
  3. [BS]
    Borel, A., Serre, J.-P.: Cohomologie d'immeubles et des groupesS-arithmetiques. Topology15, 211–232 (1976)Google Scholar
  4. [B]
    Brown, K.S.: Buildings. Berlin-Heidelberg-New York: Springer 1988Google Scholar
  5. [BT]
    Bruhat, F., Tits, J.: Groupes réductifs sur un corps local I. Données radicielles valuées. Publ. Math. Inst. Hautes Etud. Sci.41, 5–251 (1972)Google Scholar
  6. [C1]
    Cannon, J.W.: The combinatorial structure of cocompact discrete hyperbolic groups. Geom. Dedicata16, 123–148 (1984)Google Scholar
  7. [C2]
    Cannon, J.W.: Negatively Curved Spaces and Groups, Preliminary lecture notes from Topical meeting on hyperbolic geometry and ergodic theory. Trieste (April 1989)Google Scholar
  8. [CEHPT]
    Cannon, J.W., Epstein, D.B.A., Holt, D.F., Paterson, M.S., Thurston, W.P.: Word processing and group theory. University of Warwick, 1990 (Preprint)Google Scholar
  9. [DV]
    Harpe, P. de la, Valette, A.: La propriété (T) de Kazhdan pour les groupes localement compacts. Astérisgue175 (1989)Google Scholar
  10. [EP]
    El-Mosalamy, M., Pride, S.: OnT(6) groups. Math. Proc. Camb. Philos. Soc.102, 443–451 (1987)Google Scholar
  11. [G]
    Gersten, S.M.: Reducible diagrams and equations over groups. In: Gersten, S.M. (ed.) Essays in Group Theory (M.S.R.I. series, Vol. 8, pp. 15–73). Berlin-Heidelberg-New York: Springer 1987Google Scholar
  12. [G2]
    Gersten, S.M.: Dehn functions andl 1-norms of finite presentations. In: Proceedings of the Workshop on algorithmic Problems C.F. Müller III and G. Baumslag (eds.), Springer-Verlag MSRI series, 1990 (to appear)Google Scholar
  13. [Gr]
    Gromov, M.: Hyperbolic groups. In: Gersten, S.M. (ed.) Essays in Group Theory (M.S.R.I. series, Vol. 8, pp. 75–263). Berlin-Heidelberg-New York: Springer 1987Google Scholar
  14. [HU]
    Hopcroft, J.E., Ullman, J.D.: Formal languages and their relation to automata. Reading MA: Addison-Wesley 1969Google Scholar
  15. [L]
    Lyndon, R.C.: On Dehn's algorithm. Math. Ann.166, 208–228 (1966)Google Scholar
  16. [LS]
    Lyndon, R.C., Schupp, P.E.: Combinatorial group theory. Berlin-Heidelberg-New York: Springer 1977Google Scholar
  17. [P]
    Pride, S.: Some finitely presented groups of cohomological dimension two with property (FA). J. Pure Appl. Algebra29, 167–168 (1983)Google Scholar
  18. [Th]
    Thurston, W.P.: Geometry and topology of 3-manifolds. Preprint Princeton UniversityGoogle Scholar
  19. [Th2]
    Thurston, W.P.: Oral communicationGoogle Scholar
  20. [W]
    Weinbaum, C.M.: The word and conjugacy problem for the knot group of any prime alternating knot. Proc. Am. Math. Soc.22, 22–26 (1971)Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • S. M. Gersten
    • 1
  • H. B. Short
    • 1
  1. 1.Department of MathematicsMSRIBerkeleyUSA

Personalised recommendations