Inventiones mathematicae

, Volume 102, Issue 1, pp 305–334 | Cite as

Small cancellation theory and automatic groups

  • S. M. Gersten
  • H. B. Short


Automatic Group Small Cancellation Small Cancellation Theory 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [BGSS]
    Baumslag, G., Gersten, S.M., Shapiro, M., Short, H.: Automatic groups and amalgams. (in preparation)Google Scholar
  2. [BH]
    Borel, A., Harder, G.: Existence of discrete cocompact subgroups of reductive groups over local fields. J. Reine Angew. Math.298, 53–64 (1978)Google Scholar
  3. [BS]
    Borel, A., Serre, J.-P.: Cohomologie d'immeubles et des groupesS-arithmetiques. Topology15, 211–232 (1976)Google Scholar
  4. [B]
    Brown, K.S.: Buildings. Berlin-Heidelberg-New York: Springer 1988Google Scholar
  5. [BT]
    Bruhat, F., Tits, J.: Groupes réductifs sur un corps local I. Données radicielles valuées. Publ. Math. Inst. Hautes Etud. Sci.41, 5–251 (1972)Google Scholar
  6. [C1]
    Cannon, J.W.: The combinatorial structure of cocompact discrete hyperbolic groups. Geom. Dedicata16, 123–148 (1984)Google Scholar
  7. [C2]
    Cannon, J.W.: Negatively Curved Spaces and Groups, Preliminary lecture notes from Topical meeting on hyperbolic geometry and ergodic theory. Trieste (April 1989)Google Scholar
  8. [CEHPT]
    Cannon, J.W., Epstein, D.B.A., Holt, D.F., Paterson, M.S., Thurston, W.P.: Word processing and group theory. University of Warwick, 1990 (Preprint)Google Scholar
  9. [DV]
    Harpe, P. de la, Valette, A.: La propriété (T) de Kazhdan pour les groupes localement compacts. Astérisgue175 (1989)Google Scholar
  10. [EP]
    El-Mosalamy, M., Pride, S.: OnT(6) groups. Math. Proc. Camb. Philos. Soc.102, 443–451 (1987)Google Scholar
  11. [G]
    Gersten, S.M.: Reducible diagrams and equations over groups. In: Gersten, S.M. (ed.) Essays in Group Theory (M.S.R.I. series, Vol. 8, pp. 15–73). Berlin-Heidelberg-New York: Springer 1987Google Scholar
  12. [G2]
    Gersten, S.M.: Dehn functions andl 1-norms of finite presentations. In: Proceedings of the Workshop on algorithmic Problems C.F. Müller III and G. Baumslag (eds.), Springer-Verlag MSRI series, 1990 (to appear)Google Scholar
  13. [Gr]
    Gromov, M.: Hyperbolic groups. In: Gersten, S.M. (ed.) Essays in Group Theory (M.S.R.I. series, Vol. 8, pp. 75–263). Berlin-Heidelberg-New York: Springer 1987Google Scholar
  14. [HU]
    Hopcroft, J.E., Ullman, J.D.: Formal languages and their relation to automata. Reading MA: Addison-Wesley 1969Google Scholar
  15. [L]
    Lyndon, R.C.: On Dehn's algorithm. Math. Ann.166, 208–228 (1966)Google Scholar
  16. [LS]
    Lyndon, R.C., Schupp, P.E.: Combinatorial group theory. Berlin-Heidelberg-New York: Springer 1977Google Scholar
  17. [P]
    Pride, S.: Some finitely presented groups of cohomological dimension two with property (FA). J. Pure Appl. Algebra29, 167–168 (1983)Google Scholar
  18. [Th]
    Thurston, W.P.: Geometry and topology of 3-manifolds. Preprint Princeton UniversityGoogle Scholar
  19. [Th2]
    Thurston, W.P.: Oral communicationGoogle Scholar
  20. [W]
    Weinbaum, C.M.: The word and conjugacy problem for the knot group of any prime alternating knot. Proc. Am. Math. Soc.22, 22–26 (1971)Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • S. M. Gersten
    • 1
  • H. B. Short
    • 1
  1. 1.Department of MathematicsMSRIBerkeleyUSA

Personalised recommendations