Inventiones mathematicae

, Volume 102, Issue 1, pp 235–266

Entropy at a weight-per-symbol and embeddings of Markov chains

  • Brian Marcus
  • Selim Tuncel
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adler, R., Marcus, B.: Topological entropy and equivalence of dynamical systems. Mem. Am. Math. Soc.219 (1979)Google Scholar
  2. 2.
    Boyle, M.: Lower entropy factors of sofic systems. Ergodic Theory and Dyn. Syst.4, 541–557 (1984)Google Scholar
  3. 3.
    Csiszár, I., Körner, J.: Information theory: coding theorems, for discrete memorless systems. New York: Academic Press 1981Google Scholar
  4. 4.
    McEliece, R., Popović, L.: The capacity-cost function of a noiseless channel with several cost constraints. (Preprint)Google Scholar
  5. 5.
    Fellgett, R., Parry, W.: Endomorphisms of a Lebesgue space II. Bull. Lond. Math. Soc.7, 151–158 (1975)Google Scholar
  6. 6.
    Friedland, S.: Limit eigenvalues of nonnegative matrices. Linear Algebra Appl.74, 173–178.Google Scholar
  7. 7.
    Handelman, D.: Positive polynomials, convex integral polytopes, and a random walk problem. (Lecture Notes in Math., vol. 1282) Berlin-Heidelberg-New York: Springer 1987Google Scholar
  8. 8.
    Justesen, J., Hoholdt, T.: Maxentropic Markov chains. IEEE Trans. Inf. Theory30 665–667 (1984)Google Scholar
  9. 9.
    Karabed, R., Neuhoff, D., Khayrallah, A.: The capacity of costly noiseless channels. PreprintGoogle Scholar
  10. 10.
    Kitchens, B., Tuncel, S.: On measures induced on subsystems. (Lectures Notes in Math. vol. 1342, pp. 455–464). Berlin-Heidelberg-New York: Springer 1988Google Scholar
  11. 11.
    Krieger, W.: On the subsystems of topological Markov chains. Ergodic Theory and Dyn. Syst.2, 195–202 (1982)Google Scholar
  12. 12.
    Krieger, W., Marcus, B., Tuncel, S.: On automorphism of Markov chains. (Preprint)Google Scholar
  13. 13.
    Lalley, S.: Distribution of periodic orbits of symbolic and Axiom A flows. Adv. Appl. Math.8, 154–193 (1987)Google Scholar
  14. 14.
    Lanford, O.: Entropy and equilibrium states in classical statistical mechanics. (Lecture Notes in Physics, vol. 20, pp. 1–113). Berlin-Heidelberg-New York: Springer 1973Google Scholar
  15. 15.
    Lind, D.: Perturbations of shifts of finite type. PreprintGoogle Scholar
  16. 16.
    Marcus, B., Tuncel, S.: The weight-per-symbol polytope and scaffolds of invariants associated with Markov chains. Ergodic Therory and Dyn. Syst. (to appear)Google Scholar
  17. 17.
    Parry, W., Schmidt, K.: A note on cocycles of unitary representations. Proc. Am. Math. Soc.55, 185–190 (1976)Google Scholar
  18. 18.
    Parry, W., Schmidt, K.: Natural coefficients and invariants for Markov shifts. Invent. Math.76, 15–32 (1984)Google Scholar
  19. 19.
    Parry, W., Tuncel, S.: On the classification of Markov chains by finite equivalence. Ergodic Theory and Dyn. Syst.1, 303–335 (1981)Google Scholar
  20. 20.
    Parry, W., Tuncel, S.: On the stochastic and topological structure of Markov chains. Bull. Lond. Math. Soc.14, 16–27 (1982)Google Scholar
  21. 21.
    Parry, W., Tuncel, S.: Classification Problems in Ergodic Theory. (LMS Lecture Notes, vol. 67). Cambridge: Cambridge Univ. Press 1982Google Scholar
  22. 22.
    Rockafellar, T.: Convex analysis. Princeton: Princeton Univ. Press 1970Google Scholar
  23. 23.
    Ruelle, D.: Thermodynamic formalism. Reading, MA: Addison-Wesley 1978Google Scholar
  24. 24.
    Seneta, E.: Non-negative matrices and Markov chains. Berlin-Heidelberg-New York: Springer 1981Google Scholar
  25. 25.
    Tuncel, S.: Conditional pressure and coding. Isr. J. Math.39, 101–112 (1981)Google Scholar
  26. 26.
    Tuncel, S.: A dimension, dimension modules, and Markov chains. Proc. Lond. Math. Soc.46, 100–116 (1983)Google Scholar
  27. 27.
    Walters, P.: An introduction to ergodic theory. (GTM vol. 79). Berlin-Heidelberg-New York: Springer 1982Google Scholar
  28. 28.
    Williams, R.: Classification of shifts of finite type. Ann. Math.98, 120–153 (1973); (Errata) Ann. Math.99, 380–381 (1974)Google Scholar
  29. 29.
    Csiszar, I., Cover, T., Choi, B.: Conditional limit theorems under Markov conditioning, IEEE-Information Theory,33, 788–801 (1987)Google Scholar
  30. 30.
    Davisson, L., Longo, G., Sgarro, A.: The error exponent for the noiseless encoding of finite ergodic Markov sources. IEEE-Information Theory,27, 431–438 (1981)Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • Brian Marcus
    • 1
    • 2
  • Selim Tuncel
    • 1
    • 2
  1. 1.IBM Almaden Research CenterSan JoseUSA
  2. 2.Department of MathematicsUniversity of WashingtonSeattleUSA

Personalised recommendations