Inventiones mathematicae

, Volume 102, Issue 1, pp 1–15

Rectifiable sets and the Traveling Salesman Problem

  • Peter W. Jones
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bishop, C.J., Jones, P.W.: Harmonic measure and arclength. Ann. Math. (to appear)Google Scholar
  2. 2.
    Calderón, A.P.: Cauchy integrals on Lipschitz curves and related operators. Proc. Natl. Acad. Sci. U.S.A.74, 1324–1327 (1977)Google Scholar
  3. 3.
    Coifman, R.R., McIntosh, A., Meyer, Y.: L'intégrale de Cauchy définit un opérateur borné sur L2 pour les courbes Lipschitziennes. Ann. Math.116, 361–368 (1982)Google Scholar
  4. 4.
    Falconer, K.J.: The geometry of fractal sets, Cambridge University Press, 1985Google Scholar
  5. 5.
    Federer, H.: Geometric measure theory. Berlin Heidelberg New York: Springer 1969Google Scholar
  6. 6.
    Garnett, J.B.: Analytic capacity and measure (Lect. Notes Math. vol. 297) Berlin Heidelberg New York: Springer 1972Google Scholar
  7. 7.
    Garnett, J.B.: Bounded analytic functions. Academic Press, 1981Google Scholar
  8. 8.
    Jerison, D.S., Kenig, C.E.: Hardy spaces,A , and singular integrals on chord-arc domains. Math. Scand.50, 221–248 (1982)Google Scholar
  9. 9.
    Jones, P.W.: Square functions, Cauchy integrals, analytic capacity, and harmonic measure. (Lect. Notes Math, vol. 1384, pp. 24–68) Berlin Heidelberg New York: Springer 1989Google Scholar
  10. 10.
    Jones, P.W.: Lipschitz and bi-Lipschitz functions. Revista Ibero-Americana4, 155–121 (1988)Google Scholar
  11. 11.
    Jones, P.W., Murai, T.: Positive analytic capacity but zero Buffon needle probability. Pac. J. Math.133, 99–114 (1988)Google Scholar
  12. 12.
    Koosis, P.: Introduction to Hp spaces. Lond. Math. Soc., Lecture Note Series, vol. 40, 1980Google Scholar
  13. 13.
    Lawler, E.L.: The Traveling Salesman Problem. New York: Wiley-Interscience, 1985Google Scholar
  14. 14.
    Mattila, P.: Smooth maps, null-sets for integral geometric measure and analytic capacity. Ann. Math.123, 303–309 (1986)Google Scholar
  15. 15.
    Murai, T.: A real variable method for the Cauchy transform and analytic capacity. (Lect. Notes Math., vol. 1307) Berlin Heidelberg New York: Springer 1988Google Scholar
  16. 16.
    Pommerenke, Ch.: Univalent functions. Vanderhoeck and Ruprecht, Göttingen, 1975Google Scholar
  17. 17.
    Preparata, F.P., Shamos, M.I.: Computational Geometry. Berlin Heidelberg New York: Springer 1985Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • Peter W. Jones
    • 1
  1. 1.Department of MathematicsYale UniversityNew HavenUSA

Personalised recommendations