Advertisement

Inventiones mathematicae

, Volume 102, Issue 1, pp 1–15 | Cite as

Rectifiable sets and the Traveling Salesman Problem

  • Peter W. Jones
Article

Keywords

Travel Salesman Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bishop, C.J., Jones, P.W.: Harmonic measure and arclength. Ann. Math. (to appear)Google Scholar
  2. 2.
    Calderón, A.P.: Cauchy integrals on Lipschitz curves and related operators. Proc. Natl. Acad. Sci. U.S.A.74, 1324–1327 (1977)Google Scholar
  3. 3.
    Coifman, R.R., McIntosh, A., Meyer, Y.: L'intégrale de Cauchy définit un opérateur borné sur L2 pour les courbes Lipschitziennes. Ann. Math.116, 361–368 (1982)Google Scholar
  4. 4.
    Falconer, K.J.: The geometry of fractal sets, Cambridge University Press, 1985Google Scholar
  5. 5.
    Federer, H.: Geometric measure theory. Berlin Heidelberg New York: Springer 1969Google Scholar
  6. 6.
    Garnett, J.B.: Analytic capacity and measure (Lect. Notes Math. vol. 297) Berlin Heidelberg New York: Springer 1972Google Scholar
  7. 7.
    Garnett, J.B.: Bounded analytic functions. Academic Press, 1981Google Scholar
  8. 8.
    Jerison, D.S., Kenig, C.E.: Hardy spaces,A , and singular integrals on chord-arc domains. Math. Scand.50, 221–248 (1982)Google Scholar
  9. 9.
    Jones, P.W.: Square functions, Cauchy integrals, analytic capacity, and harmonic measure. (Lect. Notes Math, vol. 1384, pp. 24–68) Berlin Heidelberg New York: Springer 1989Google Scholar
  10. 10.
    Jones, P.W.: Lipschitz and bi-Lipschitz functions. Revista Ibero-Americana4, 155–121 (1988)Google Scholar
  11. 11.
    Jones, P.W., Murai, T.: Positive analytic capacity but zero Buffon needle probability. Pac. J. Math.133, 99–114 (1988)Google Scholar
  12. 12.
    Koosis, P.: Introduction to Hp spaces. Lond. Math. Soc., Lecture Note Series, vol. 40, 1980Google Scholar
  13. 13.
    Lawler, E.L.: The Traveling Salesman Problem. New York: Wiley-Interscience, 1985Google Scholar
  14. 14.
    Mattila, P.: Smooth maps, null-sets for integral geometric measure and analytic capacity. Ann. Math.123, 303–309 (1986)Google Scholar
  15. 15.
    Murai, T.: A real variable method for the Cauchy transform and analytic capacity. (Lect. Notes Math., vol. 1307) Berlin Heidelberg New York: Springer 1988Google Scholar
  16. 16.
    Pommerenke, Ch.: Univalent functions. Vanderhoeck and Ruprecht, Göttingen, 1975Google Scholar
  17. 17.
    Preparata, F.P., Shamos, M.I.: Computational Geometry. Berlin Heidelberg New York: Springer 1985Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • Peter W. Jones
    • 1
  1. 1.Department of MathematicsYale UniversityNew HavenUSA

Personalised recommendations