Somatic Cell and Molecular Genetics

, Volume 19, Issue 6, pp 543–555 | Cite as

Evidence for erosion of mouse CpG islands during mammalian evolution

  • Koichi Matsuo
  • Oliver Clay
  • Takuya Takahashi
  • John Silke
  • Walter Schaffner


In housekeeping and many tissue-specific genes, the promoter is embedded in a so-called CpG island. We have compared the available human and mouse DNA sequences with respect to their CpG island properties. While mouse sequences showed a simple gradient distribution of G+C content and CpG densities, man had a distinct peak of sequences with typical CpG island characteristics. Pairwise comparison of 23 orthologous genes revealed that mouse almost always had a less pronounced CpG island than man, or none at all. In both species the requirements for a functional CpG island may be similar in that most DNA regions with a density of six or more CpG per 100 bp remain unmethylated. However, the mouse has apparently experienced more accidental CpG island methylation, suggested by local TpG and CpA excess. We propose that: (1) in mouse the CpG islands do not represent the ancestral state but have been eroded during evolution, and (2) this erosion may be related to the mouse's small body mass and short life-span, allowing for a more relaxed control of gene activity.


Orthologous Gene Small Body Distinct Peak Ancestral State Mammalian Evolution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    Bird, A.P. (1986).Nature 321209–213.Google Scholar
  2. 2.
    Gardiner-Garden, M. and Frommer, M. (1987).J. Mol. Biol. 196261–282.Google Scholar
  3. 3.
    Larsen, F., Gundersen, G., Lopez, R. and Prydz, H. (1992).Genomics 131095–1107.Google Scholar
  4. 4.
    Monk, M. (1990).Phil. Trans. R. Soc. London, Ser. B 326299–312.Google Scholar
  5. 5.
    Stöger, R., Kubička, P., Liu, C.-G., Kafri, T., Razin, A., Cedar, H., and Barlow, D.P. (1993).Cell 7361–71.Google Scholar
  6. 6.
    Ferguson-Smith, A.C., Sasaki, H., Cattanach, B.M., and Surani, M.A. (1993).Nature 362751–755.Google Scholar
  7. 7.
    Antequera, F., Boyes, J., and Bird, A. (1990).Cell 62503–514.Google Scholar
  8. 8.
    Tazi, J., and Bird, A. (1990).Cell 60909–920.Google Scholar
  9. 9.
    Sved, J., and Bird, A. (1990).Proc. Natl. Acad. Sci. U.S.A. 874692–4696.Google Scholar
  10. 10.
    Cross, S., Kovarik, P., Schmidtke, J., and Bird, A. (1991).Nucleic Acids Res. 191469–1474.Google Scholar
  11. 11.
    Aïssani, B., and Bernardi, G. (1991).Gene 106173–183.Google Scholar
  12. 12.
    Aïssani, B., and Bernardi, G. (1991).Gene 106185–195.Google Scholar
  13. 13.
    Bucher, P., and Trifonov, E.N. (1986).Nucleic Acids Res. 1410009–10026.Google Scholar
  14. 14.
    Devereux, J., Haeberli, P., and Smithies, O. (1984).Nucleic Acids Res. 12387–395.Google Scholar
  15. 15.
    Bernardi, G., Olofsson, B., Filipski, J., Zerial, M., Salinas, J., Cuny, G., Meunier-Rotival, M., and Rodier, F. (1985).Science 228953–958.Google Scholar
  16. 16.
    Saccone, S., De Sario, A., Della Valle, G., and Bernardi, G. (1992).Proc. Natl. Acad. Sci. U.S.A. 894913–4917.Google Scholar
  17. 17.
    Bird, A.P., Taggart, M.H., Nicholls, R.D., and Higgs, D.R. (1987).EMBO J. 6999–1004.Google Scholar
  18. 18.
    Larsen, F., Solheim, J., and Prydz, H. (1993).Hum. Mol. Genet. 2775–780.Google Scholar
  19. 19.
    Shemer, R., Eisenberg, S., Breslow, J.L., and Razin, A. (1991).J. Biol. Chem. 26623676–23681.Google Scholar
  20. 20.
    Kochanek, S., Renz, D., and Doerfler, W. (1993).EMBO J. 121141–1151.Google Scholar
  21. 21.
    Bestor, T. (1987).Nucleic Acids Res. 153835–3843.Google Scholar
  22. 22.
    Carotti, D., Palitti, F., Lavia, P., and Strom, R. (1989).Nucleic Acids Res. 179219–9229.Google Scholar
  23. 23.
    Boyes, J., and Bird, A. (1991).Cell 641123–1134.Google Scholar
  24. 24.
    Boyes, J., and Bird, A. (1992).EMBO J. 11327–333.Google Scholar
  25. 25.
    Frank, D., Keshet, I., Shani, M., Levine, A., Razin, A., and Cedar, H. (1991).Nature 351239–241.Google Scholar
  26. 26.
    Migeon, B.R., Axelman, J., and Beggs, A.H. (1988).Nature 33593–96.Google Scholar
  27. 27.
    Holliday, R. (1989).Nature 337311.Google Scholar
  28. 28.
    Wright, W.E., Pereira-Smith, O.M., and Shay, J.W. (1989).Mol. Cell. Biol. 93088–3092.Google Scholar
  29. 29.
    Holliday, R. (1987).Science 238163–170.Google Scholar
  30. 30.
    Holliday, R. (1993). InDNA Methylation: Molecular Biology and Biological Significance, (ed.) Jost, J.P. and Saluz, H.P. (Birkhäuser, Basel), pp. 452–468.Google Scholar
  31. 31.
    Human Gene Mapping 11 (1991).Cytogenet Cell Genet 581–2200.Google Scholar
  32. 32.
    Ghazi, H., Magewu, A.N., Gonzales, F., and Jones, P.A. (1990).Development 1990 Suppl. 115–123.Google Scholar
  33. 33.
    Kafri, T., Ariel, M., Brandeis, M., Shemer, R., Urven, L., McCarrey, J., Cedar, H., and Razin, A. (1992).Genes Dev. 6705–714.Google Scholar
  34. 34.
    Lock, L.F., Melton, D.W., Caskey, C.T., and Martin, G.R. (1986).Mol. Cell. Biol. 6914–924.Google Scholar
  35. 35.
    Stein, R., Sciaky-Gallili, N., Razin, A., and Cedar, H. (1983).Proc. Natl. Acad. Sci. U.S.A. 802422–2426.Google Scholar
  36. 36.
    Mitchell, P.J., Carothers, A.M., Han, J.H., Harding, J.D., Kas, E., Venolia, L., and Chasin, L.A. (1986).Mol. Cell. Biol. 6425–440.Google Scholar

Copyright information

© Plenum Publishing Corporation 1993

Authors and Affiliations

  • Koichi Matsuo
    • 1
  • Oliver Clay
    • 1
  • Takuya Takahashi
    • 1
  • John Silke
    • 1
  • Walter Schaffner
    • 1
  1. 1.Institut für Molekularbiologie II der Universität ZürichZürichSwitzerland

Personalised recommendations