Inventiones mathematicae

, Volume 114, Issue 1, pp 207–218

Dynamics of the continued fraction map and the spectral theory of SL (2, Z)

  • Isaac Efrat


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [D]
    Dickson, L.E.: Introduction to the Theory of Numbers. New York: Dover 1957Google Scholar
  2. [E1]
    Efrat, I.: The Selberg trace formula for PSL (2,R)n. Mem. Am. Math. Soc.65, no. 359 (1987)Google Scholar
  3. [E2]
    Efrat, I.: On a family of Hilbert modular Maass forms. Arch. Math.49, 305–308 (1987)Google Scholar
  4. [E3]
    Efrat, I.: Determinants of Laplacians on surfaces of finite volume. Commun. Math. Phys.119, 443–451 (1988); Erratum138, 607 (1991)Google Scholar
  5. [G]
    Grothendieck, A.: La theorie de Fredholm. Bull. Soc. Math. Fr.84, 319–384 (1956)Google Scholar
  6. [K]
    Koyama, S.: Selberg zeta functions for PSL and PGL over function fields. (Preprint 1991)Google Scholar
  7. [M1]
    Mayer, D.: On a ζ function related to the continued fraction transformation. Bull. Soc. Math. Fr.104, 195–203 (1976)Google Scholar
  8. [M2]
    Mayer, D.: On the thermodynamic formalism for the Gauss map. Commun. Math. Phys.130, 311–333 (1990)Google Scholar
  9. [M3]
    Mayer, D.: A thermodynamic approach to Selberg's zeta function for PSL(2,Z). Bull. Am. Math. Soc.25 (no. 1), 55–60 (1991)Google Scholar
  10. [Mat]
    Mathews, G.B.: Theory of Numbers. New York: ChelseaGoogle Scholar
  11. [P]
    Pollicott, M.: Some applications of thermodynamic formalism to manifolds of constant negative curvature. Adv. Math.85, 161–192 (1991)Google Scholar
  12. [R1]
    Ruelle, D.: Zeta functions for expanding maps and Anosov flows. Invent. Math.34, 231–242 (1976)Google Scholar
  13. [R2]
    Ruelle, D.: Thermodynamic Formalism. Reading, MA: Addison-Wesley 1978Google Scholar
  14. [S]
    Sarnak, P.: Class numbers of indefinite binary quadratic forms. J. Number Theory15, 229–247 (1982)Google Scholar
  15. [V]
    Venkov, A.B.:Spectral Theory of Automorphic Functions. Proc. Steklov Inst. Math.4, 153 (1982)Google Scholar
  16. [Z]
    Zagier, D.: Zetafunktionen und quadratische Körper. Berlin Heidelberg New York: Springer 1981Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • Isaac Efrat
    • 1
  1. 1.Department of MathematicsUniversity of MarylandCollege ParkUSA

Personalised recommendations