Inventiones mathematicae

, Volume 112, Issue 1, pp 23–29

Scalar-flat closed manifolds not admitting positive scalar curvature metrics

  • Akito Futaki
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [B] Besse, A.L.: Einstein manifolds. Berlin Heidelberg New York: Springer 1986Google Scholar
  2. [F] Friedrich, T.: Zur Existenz paralleler Spinorfelder über Riemannschen Mannigfaltigkeite. Colloq. Math.XLIV, 277–290 (1981)Google Scholar
  3. [GL] Gromov, M., Lawson, H.B.: The classification of simply connected manifolds of positive scalar curvature. Ann. Math.111, 423–434 (1980)Google Scholar
  4. [H] Hitchin, N.: Harmonic spinors. Adv. Math.14, 1–55 (1974)Google Scholar
  5. [KW] Kazdan, J.L., Warner, F.W.: Scalar curvature and conformal deformation of Riemannian structure. J. Differ. Geom.10, 113–134 (1975)Google Scholar
  6. [KS] Kwasik, S., Schultz, R.: Positive scalar curvature and periodic fundamental group. Comment. Math. Helv.65, 271–286 (1990)Google Scholar
  7. [M] Mathai, V.: Non-negative scalar curvature. University of Adelaide (Preprint 1990)Google Scholar
  8. [O] Ono, K.: The scalar curvature and the spectrum of the Laplacian of spin manifolds. Math. Ann.281, 163–168 (1988)Google Scholar
  9. [R] Rosenberg, J.: The KO-assembly map and positive scalar curvature. (Lect. Notes Math., vol. 1474) Berlin Heidelberg New York: Springer 1991Google Scholar
  10. [RS] Rosenberg, J.,Stolz, S.: Manifolds of positive scalar curvature (Preprint 1990)Google Scholar
  11. [Sa] Salamon, S.: Riemannian geometry and holonomy groups. (Pitman Res. Notes Math., vol. 201) Essex: Longman Scientific & Technical (1989)Google Scholar
  12. [S1] Stolz, S.: Simply connected manifolds of positive scalar curvature. Bull. Am. Math. Soc.23, 427–432 (1990)Google Scholar
  13. [S2] Stolz, S.: Simply connected manifolds of positive scalar curvature. Ann. Math. (to appear)Google Scholar
  14. [W] Wang, M.: Parallel spinors and parallel forms. Ann. Global Anal. Geom.7, 59–68 (1989)Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • Akito Futaki
    • 1
    • 2
  1. 1.Max-Planck-Institut für MathematikBonn 3Germany
  2. 2.Department of MathematicsTokyo Institute of TechnologyTokyoJapan

Personalised recommendations