Advertisement

Inventiones mathematicae

, Volume 112, Issue 1, pp 1–8 | Cite as

Bounds for automorphicL-functions

  • W. Duke
  • J. Friedlander
  • H. Iwaniec
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [B] Burgess, D.A.: On Character sums andL-series I. Proc. Lond. Math. Soc, III. Ser.12, 193–206 (1962), II ibid Burgess, D.A.: On Character sums andL-series I. Proc. Lond. Math. Soc, III. Ser.13, 524–536 (1963)Google Scholar
  2. [D] Duke, W.: Hyperbolic distribution problems and half-integral weight Maass forms. Invent. Math.92, 73–90 (1988)Google Scholar
  3. [D-I1] Duke, W., Iwaniec, H.: Bilinear forms in the Fourier coefficients of half-integral weight cusp forms and sums over primes. Math. Ann.286, 783–802 (1990)Google Scholar
  4. [D-I2] Duke, W., Iwaniec, H.: Estimates for coefficients ofL-functions I. In: Murty, R. (ed.) Automorphic Forms and Analytic Number Theory, pp. 43–47. Montreal: CRM 1990; II. In: Proc. Conf. Amalfi (to appear); III. In: Sinnou, D. (ed.) Sem Th. Nomb. Paris 1989–90, pp. 113–120. Boston: Birkhauser 1992; IV. Am. J. Math. (to appear)Google Scholar
  5. [D-SP] Duke, W., Schulze-Pillot, R.: Representation of integers by positive ternary quadratic forms and equidistribution of lattice points on ellipsoids. Invent. Math.99, 49–57 (1990)Google Scholar
  6. [F-I] Friedlander, J., Iwaniec, H.: A mean-value theorem for character sums. Mich. Math. J.39, 153–159 (1992)Google Scholar
  7. [I] Iwaniec, H.: Fourier coefficients of modular forms of half-integral weight. Invent. Math.87, 385–401 (1987)Google Scholar
  8. [K] Kohnen, W.: Fourier coefficients of modular forms of half-integral weight. Math. Ann.271, 237–268 (1985)Google Scholar
  9. [Sa] Sarnak, P.: Some Applications of Modular Forms. (Camb. Tracts Math., vol. 99) Cambridge: Cambridge University Press 1991Google Scholar
  10. [Sh] Shimura, G.: Introduction to the Arithmetic Theory of Automorphic Functions. Princeton: Iwanami Shoten and Princeton University Press 1971Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • W. Duke
    • 1
  • J. Friedlander
    • 2
  • H. Iwaniec
    • 1
  1. 1.Rutgers UniversityNew BrunswickUSA
  2. 2.University of TorontoTorontoCanada

Personalised recommendations