Inventiones mathematicae

, Volume 123, Issue 1, pp 61–94 | Cite as

Singular homology of abstract algebraic varieties

  • Andrei Suslin
  • Vladimir Voevodsky


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Bloch: Algebraic cycles and higher K-theory. Adv. in Math.,61, 267–304 (1986)Google Scholar
  2. 2.
    N. Bourbaki: Algébre commutative. Herman, Paris, 1964Google Scholar
  3. 3.
    A. Dold, R. Thom: Quasifaserungen und unendliche symmtrische Produkte. Ann. Math.67, 230–281 (1956)Google Scholar
  4. 4.
    E. Friedlander: Some computations of algebraic cycle homology. (Preprint 1993).Google Scholar
  5. 5.
    E. Friedlander and H. Lawson. A theory of algebraic cocycles. Ann. Math.,136, 361–428 (1992)Google Scholar
  6. 6.
    E.M. Friedlander and B. Mazur. Filtrations on the homology of algebraic varieties. AMS, Providence, RI, 1994Google Scholar
  7. 7.
    H. Gillet and R. Thomason. The K-theory of strict hensel local rings and a theorem of Suslin. J. Pure Appl. Algebra,34, 241–254 (1984)Google Scholar
  8. 8.
    A. Grothendieck. Revetements etale et groupe fondamental(SGA 1). Lecture Notes in Math. 224. Springer, Heidelberg, 1971Google Scholar
  9. 9.
    A. Grothendieck, M. Artin, and J.-L. Verdier. Theorie des topos et cohomologie etale des schemas (SGA 4). Lecture Notes in Math. 269,270,305. Springer, Heidelberg, 1972–73Google Scholar
  10. 10.
    A. Grothendieck and J. Dieudonne. Etude Cohomologique des Faisceaux Coherents (EGA 3). Publ. Math. IHES,11,17, 1961,1963Google Scholar
  11. 11.
    A. Grothendieck and J. Dieudonne. Etude Locale des Schemas et des Morphismes de Schemas (EGA 4). Publ. Math. IHES,20,24,28,32, 1964–67Google Scholar
  12. 12.
    J.F. Jardine. Simplicial objects in a Grothendieck topos. Contemp. Math.,55(1), 193–239 (1986)Google Scholar
  13. 13.
    S. Landsburg. Relative cycles and algebraic K-theory. Am. J. Math.,111, 599–632 (1989)Google Scholar
  14. 14.
    H.B. Lawson. Algebraic cycles and homotopy theory. Ann. Math.,129, 599–632 (1989)Google Scholar
  15. 15.
    S. Lichtenbaum. Suslin homology and Deligne 1-motives. Preprint, 1992Google Scholar
  16. 16.
    S. MacLane. Homology. Springer-Verlag, 1963Google Scholar
  17. 17.
    J.S. Milne. Etale Cohomology. Princeton Univ. Press, Princeton, NJ, 1980Google Scholar
  18. 18.
    M. Raynaud and L. Gruson. Criteres de platitude et de projectivite. Inn. Math.,13, 1–89 (1971)Google Scholar
  19. 19.
    J.-P. Serre. Algebre locale. Multiplicities. Lecture Notes in Math., 11, 1965Google Scholar
  20. 20.
    I.R. Shafarevich. Basic algebraic geometry. Springer-Verlag, New York, 1974Google Scholar
  21. 21.
    A. Suslin. On the K-theory of algebraically closed fields. Invent. Math,73, 241–245 (1983)Google Scholar
  22. 22.
    A. Suslin. Algebraic K-theory of fields. Proceedings of ICM Berkeley, pages 222–244, 1986Google Scholar
  23. 23.
    A. Suslin. Higher Chow groups of affine varieties and etale cohomology. Preprint, 1993Google Scholar
  24. 24.
    V. Voevodsky. Homology of schemes and covariant motives. Harvard Univ. Ph.D. thesis, 1992Google Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • Andrei Suslin
    • 1
  • Vladimir Voevodsky
    • 1
  1. 1.Department of MathematicsHarward UniversityCambridgeUSA

Personalised recommendations