Inventiones mathematicae

, Volume 123, Issue 1, pp 1–34 | Cite as

Cellular algebras

  • J. J. Graham
  • G. I. Lehrer

Abstract

A class of associative algebras (“cellular”) is defined by means of multiplicative properties of a basis. They are shown to have cell representations whose structure depends on certain invariant bilinear forms. One thus obtains a general description of their irreducible representations and block theory as well as criteria for semisimplicity. These concepts are used to discuss the Brauer centraliser algebras, whose irreducibles are described in full generality, the Ariki-Koike algebras, which include the Hecke algebras of type A and B and (a generalisation of) the Temperley-Lieb and Jones' recently defined “annular” algebras. In particular the latter are shown to be non-semisimple when the defining paramter δ satisfies\(\gamma _{g(n)} (\tfrac{{ - \delta }}{2}) = 1\), where γn is then-th Tchebychev polynomial andg(n) is a quadratic polynomial.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [AK] S. Ariki, K. Koike: A Hecke algebra of (ℤ/rℤ)/Sn and construction of its irreducible representations. Adv. Math.106, 216–243 (1994)Google Scholar
  2. [B] R. Brauer: On algebras which are connected with the semisimple continuous groups. Ann. Math.38, 854–887 (1937)Google Scholar
  3. [BV] D. Barbasch, D. Vogan: Primitive ideals and orbital integrals in complex classical groups. Math. Ann.259, 153–199 (1982)Google Scholar
  4. [Ca] R. Carter: Finite groups of Lie type: conjugacy classes and complex characters. Wiley, Chichester New York, 1985Google Scholar
  5. [CPS] E. Cline, B. Parshall, L. Scott: Finite dimensional algebras and highest weight categories. J. Reine Angew. Math.391, 85–99 (1988)Google Scholar
  6. [Cu] C. W. Curtis: Representations of finite groups of Lie type. Bull. A.M.S.1, 721–757 (1979)Google Scholar
  7. [D] R. Dipper: Polynomial Representations of finite general linear groups in nondescribing characteristic. Prog. in Math.95, 343–370 (1991)Google Scholar
  8. [DJ1] R. Dipper, G. James: Representations of Hecke algebras of general linear groups. Proc. Lond. Math. Soc. (3)52, 20–52 (1986)Google Scholar
  9. [DJ2] R. Dipper, G.D. James: Blocks and idempotents of Hecke algebras of general linear groups. Proc. Lond. Math. Soc. (3)54, 57–82 (1987)Google Scholar
  10. [DJ3] R. Dipper, G.D. James: Identification of the irreducible modular representations of GLn (q). J. Algebra,104, 266–288 (1986)Google Scholar
  11. [DJM] R. Dipper, G.D. James, G.E. Murphy: Hecke algebras of typeB n at roots of unity (Preprint 1994)Google Scholar
  12. [Dr] V.G. Drinfeld: Quantum groups. Proc. Int. Cong. Math. Berkeley pp. 798–820 1986 (1987)Google Scholar
  13. [FG] S. Fishel, I. Grojnowski: Canonical bases for the Brauer centralizer algebra. Math. Res. Letters2, 1–16 (1995)Google Scholar
  14. [G] M. Geck: On the decomposition Numbers of the finite unitary groups in non-defining characteristic. Math. Z.207, 83–89 (1991)Google Scholar
  15. [GM] A.M. Garsia, T.J. McLarnen: Relations between Young's natural and the Kazhdan Lusztig representations ofS n. Adv. Math.69, 32–92 (1988)Google Scholar
  16. [Gr] J. Graham: Modular representations of Hecke algebras and related algebras. PhD Thesis, Sydney University 1995Google Scholar
  17. [GW] F.M. Goodman, H. Wenzl: The Temperley-Lieb algebra at roots of unity. Pac. J. Math.161, 307–334 (1993)Google Scholar
  18. [HL1] R.B. Howlett, G.I. Lehrer: Induced cuspidal representations and generalised Hecke rings. Invent. Math.58, 37–64 (1980)Google Scholar
  19. [HL2] R.B. Howlett, G.I. Lehrer: Representations of generic algebras and finite groups of Lie type. Trans. A.M.S.280, 753–777 (1983)Google Scholar
  20. [HW] P. Hanlon, D. Wales: A tower construction for the radical in Brauer's centraliser algebras. J. Algebra164, 773–830 (1994)Google Scholar
  21. [J1] V.F.R. Jones: A polynomial invariant for knots via von Neumann algebras. Bull. A.M.S.12, 103–111 (1985)Google Scholar
  22. [J2] V.F.R. Jones: Hecke algebra representations of braid groups and link polynomials. Ann. Math.126, 335–388 (1987)Google Scholar
  23. [J3] V.F.R. Jones: A quotient of the affine Hecke algebra in the Brauer algebra. L'Enseignement Math.40, 313–344 (1994)Google Scholar
  24. [J4] V.F.R. Jones: Subfactors and Knots. C.B.M.S.80, A.M.S., Providence RI 1991Google Scholar
  25. [Ji] M. Jimbo: A q-analogue ofU(gl(n+1)), Hecke algebra and the Yang-Baxeter equation. Lett. Math. Phys.11, 247–252 (1986)Google Scholar
  26. [KL1] D. Kazhdan, G. Lusztig: Representations of Coxeter groups and Hecke algebras. Invent. math.53, 165–184 (1979)Google Scholar
  27. [KL2] D. Kazhdan, G. Lusztig: Schubert varieties and Poincaré duality. Proc. Sym. Pure Math. A.M.S.36, 185–203 (1980)Google Scholar
  28. [Kn] D. Knuth: The art of computer programming. Addison-Wesley, Reading MA 1975Google Scholar
  29. [L] G.I. Lehrer: A survey of Hecke algebras and the Artin braid groups. Contemp. Math.78, 365–385 (1988)Google Scholar
  30. [Lu1] G. Lusztig: Characters of reductive groups over a finite field. Ann. Math. Studies107, Princeton U.P., NJ, 1984Google Scholar
  31. [Lu2] G. Lusztig: Left cells in Weyl groups, in Springer L.N.M.1024, 99–111, Berlin, Heidelberg, New York, 1983Google Scholar
  32. [Lu3] G. Lusztig: Finite dimensional Hopf algebras arising from quantum groups. J.A.M.S.3, 257–296 (1990)Google Scholar
  33. [M] G.E. Murphy: On the representation theory of the symmetric groups and associated Hecke algebras. J. Algebra152, 492–513 (1992)Google Scholar
  34. [Sh] J-Y. Shi: The Kazhdan-Lusztig cells in certain affine Weyl groups, Springer L.N.M.1179, Berlin, Heidelberg, New York, 1988Google Scholar
  35. [V] D. Vogan: A generalised τ-invariant for the primitive spectrum of a semisimple Lie algebra. Math. Ann.242, 209–224 (1979)Google Scholar
  36. [W] H. Wenzl: On the structure of Brauer's centralizer algebras. Ann. Math.128, 173–193 (1988)Google Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • J. J. Graham
    • 1
  • G. I. Lehrer
    • 1
  1. 1.School of Mathematics and StatisticsUniversity of SydneySydneyAustralia

Personalised recommendations