Inventiones mathematicae

, Volume 105, Issue 1, pp 415–430 | Cite as

Propagation of moments and regularity for the 3-dimensional Vlasov-Poisson system

  • P. L. Lions
  • B. Perthame
Article

Summary

We prove that, if the initial data has moments inv higher than three, then the solution of Vlasov-Poisson has also moments inv higher than three. We deduce from this different regularity results on the local density, the force field or the solution itself. Also we give a new uniqueness result, and new regularity results for solutions satisfying only the energy andL bounds. Our proofs are based on a new representation formula and logarithmic estimates for the force field.

Résumé

Nous montrons que, si la donnée initiale possède des moments env plus élevés que trois, alors la solution de l'Equation de Vlasov-Poisson a aussi des moments plus élevés que trois. Nous en déduisons différents résultats de régularité sur la densité locale, le champ de force ou la solution elle-même. Nous donnons également un nouveau résultat d'unicité et de nouveaux résultats de régularité pour les solutions vérifiant uniquement les estimations d'énergie et les bornesL. Nos démonstrations sont fondés sur une nouvelle formule de représentation et des estimées logarithmiques sur le champ de force.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arsenev, A.A.: Global existence of a weak solution of Vlasov's system of equations. U.S.S.R. Comput. Math. Math. Phys.15, 131–143 (1975)Google Scholar
  2. 2.
    Arsenev, A.A.: Some estimates for the solution of the Vlasov Equation (Russian) Zh. Vychiol. Mat. i Mat. Fiz. 25 (1985), no 1, 80–87Google Scholar
  3. 3.
    Bardos, C., Degond, P.: Global existence for the Vlasov-Poisson Equation in 3 space variables with small initial data. Ann. Inst. Henri Poincaré, Anal. Non Linéaire2, 101–118 (1985)Google Scholar
  4. 4.
    Batt, J.: Global symmetric solutions of the initial value problem of stellar dynamics, J. Differ. Equations25, 342–364 (1977)Google Scholar
  5. 5.
    Batt, J.: The nonlinear Vlasov-Poisson system of Partial Differential Equations in stellar dynamics. Publ. CNER Math. Pures Appl.5, 1–30 (1983)Google Scholar
  6. 6.
    Batt, J.: The present state of the existence theory of the Vlasov-Poisson and Vlasov-Maxwell system of partial differential equations in plasma physics. In: Boffi, V., Neunzert, H. (eds.) Applications of mathematics in technology, Proceedings Rome 1984, pp. 375–385. Stuttgart: Teubner 1984Google Scholar
  7. 7.
    Degond, P.: Régularité de la solution des équations cinétiques en physique des plasmas. Sémin. Équations Dériv. Partielles. Palaiseau: Ecole Polytechnique 1985–1986Google Scholar
  8. 8.
    Di Perna, R.J., Lions, P.L.: Ordinary differential equations transport equations and Sobolev spaces. Invent. Math.98, 511–547 (1989); Semin. Équations Dériv. Partielles. Palaiseau: Ecole Polytechnique 1988–1989Google Scholar
  9. 9.
    Di Perna, R.J. Lions, P.L.: Solution globales d'équations du type Vlasov-Poisson. C.R. Acad. Sci. Paris307, 655–658 (1988) and paper in preparationGoogle Scholar
  10. 10.
    Di Perna, R.J., Lions, P.L.: Global weak solutions of kinetic equations. Rend. Semin. Mat., Torino (to appear)Google Scholar
  11. 11.
    Glassey, R.T., Schaeffer, J.: On symmetric solutions of the relativistic Vlasov-Poisson system. Commun. Math. Phys.101, 459–473 (1985)Google Scholar
  12. 12.
    Horst, E.: On the classical solutions of the initial value problem for the unmodified nonlinear Vlasov Equations. I: General theory. II: Special cases. Math. Methods Appl. Sci.3, 229–248 (1981);4, 19–32 (1982)Google Scholar
  13. 13.
    Horst, E., Hunze, R.: Weak solutions of the initial value problem for the unmodified nonlinear Vlasov equation. Math. Methods Appl. Sci.6, 262–279 (1984)Google Scholar
  14. 14.
    Horst, E.: Global strong solutions of Vlasov's Equation. Necessary and sufficient conditions for their existence. Partial differential equations. Banach Cent. Publ.19, 143–153 (1987)Google Scholar
  15. 15.
    Illner, R., Neunzert, H.: An existence theorem for the unmodified Vlasov Equation. Math. Meth. Appl. Sci.1, 530–544 (1979)Google Scholar
  16. 16.
    Iordanskii, S.V.: The Cauchy problem for the kinetic equation of plasma. Transl., II. Ser., Am. Math. Soc.35, 351–363 (1964)Google Scholar
  17. 17.
    Lions, P.L., Perthame, B.: Regularité des solutions du système de Vlasov-Poisson en dimension 3. C.R. Acad. Sci., Paris, Sér. I t. 311 (1990)Google Scholar
  18. 18.
    Perthame, B.: Higher moments for kinetic equations: application to Vlasov-Poisson and Fokker-Planck equations. Math. Meth. Appl. Sci.13, 441–452 (1990)Google Scholar
  19. 19.
    Pfaffelmoser, K.: Global classical solutions of the Vlasov-Poisson system in three dimensions for general initial data. (Preprint)Google Scholar
  20. 20.
    Schaeffer, J.: Global existence for the Poisson-Vlasov system with nearly symmetric data. J. Diff. Eq.69, 111–148 (1987)Google Scholar
  21. 21.
    Ukai, S., Okabe, T.: On classical solutions in the large in time of two dimensional Vlasov's equation. Osaka J. Math.15, 245–261 (1978)Google Scholar
  22. 22.
    Wollman, S.: Global in time solutions of the two dimensional Vlasov-Poisson system. Commun. Pure Appl. Math.33, 173–197 (1980)Google Scholar

Copyright information

© Springer International 1991

Authors and Affiliations

  • P. L. Lions
    • 1
  • B. Perthame
    • 2
  1. 1.CEREMADEUniversité Paris IX-DauphineParis Cedex 16
  2. 2.Département de MathématiquesUniversité d'OrléansOrléans Cedex 2

Personalised recommendations