Inventiones mathematicae

, Volume 117, Issue 1, pp 1–25 | Cite as

Abhyankar's conjecture on Galois groups over curves

  • David Harbater
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Ab1] S. Abhyankar. Coverings of algebraic curves. Amer. J. Math.79, 825–856 (1957).Google Scholar
  2. [Ab2] S. Abhyankar. Galois theory on the line in nonzero characteristic. Bull. Amer. Math. Soc. (New Ser.)27, 68–133 (1992).Google Scholar
  3. [AGV] M. Artin, A. Grothendieck, J.-L. Verdier. Theorie des topos et cohomologie étale des schemas (SGA4). Lecture Notes in Mathematics269, Springer, New York, 1972.Google Scholar
  4. [AB] M. Auslander, D. Buchsbaum. Homological dimension in local rings. Trans. Amer. Math. Soc.85, 390–405 (1957).Google Scholar
  5. [Gr] A. Grothendieck, Revêtements étales et groupe fondamental (SGA 1). Lecture Notes in Math.224, Springer-Verlag, Berlin-Heidelberg-New York, 1971.Google Scholar
  6. [Ha1] D. Harbater. Moduli ofp-covers of curves. Communications in Algebra8, 1095–1122 (1980).Google Scholar
  7. [Ha2] D. Harbater. On purity of inertia. Proc. Amer. Math. Soc.112, 311–319 (1991).Google Scholar
  8. [Ha3] D. Harbater. Formal patching and adding branch points. Amer. J. Math.115, 487–508 (1993).Google Scholar
  9. [Ka] T. Kambayashi. Nori's construction of Galois coverings in positive characteristics. Algebraic and Topological Theories, Tokyo (1985), 640–647.Google Scholar
  10. [Ra] M. Raynaud. Revêtements de la droite affine en caractéristiquep>0 et conjecture d'Abhyankar. Invent. Math.116, 425–462 (1994).Google Scholar
  11. [Se1] J.-P. Serre, Cohomologie Galoisienne. Springer, New York, 1964.Google Scholar
  12. [Se2] J.-P. Serre. Construction de revêtements étales de la droite affine en caractéristiquep. Comptes Rendus311, 341–346 (1990).Google Scholar
  13. [Se3] J.-P. Serre. Revêtements de courbes algébriques. Sem. Bourb.749 (1991).Google Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • David Harbater
    • 1
  1. 1.Department of MathematicsUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations