Inventiones mathematicae

, Volume 109, Issue 1, pp 595–617 | Cite as

Examples of tensor categories

  • Sergei Gelfand
  • David Kazhdan
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Deligne, P.: Catégories Tannakiennes. Grothendieck Festschrift, vol. 2, Birkhäuser, Boston, 1991, pp. 111–195Google Scholar
  2. 2.
    Lusztig, G.: Finite dimensional Hopf algebras arising from quantized universal enveloping algebras. J. Am. Math. Soc.3, 257–296 (1990)Google Scholar
  3. 3.
    Lusztig, G.: Quantum groups at roots of 1. Geom. Dedicate35, 89–114 (1990)Google Scholar
  4. 4.
    Tsuchiya, A., Kanie, Y.: Vertex operators in two dimensional conformal field theory on P1 and monodromy representations of braid groups. Adv. Stud. Pure Math., vol. 16. Academic Press, Boston, 1988, pp. 297–372; vol. 19, 1898, pp. 675–682Google Scholar
  5. 5.
    Reshetikhin, Yu., Turaev, V.G.: Invariants of 3-manifolds via link polynomials and quantum groups. Invent. Math.103, 547–597 (1991)Google Scholar
  6. 6.
    Turaev, V., Wenzl, H.: State sum invariants of 3-manifolds via link polynomials and quantum print (1991)Google Scholar
  7. 7.
    Andersen, H.H.: Tensor products of quantized tilting modules. Preprint (1991)Google Scholar
  8. 8.
    MacLane, S.: Categories for working mathematician. Springer, Berlin Heidelberg New York 1967Google Scholar
  9. 9.
    Deligne, P., Milne, J.S.: Tannakian categories, Lecture Notes in Math., vol. 900. Springer, Berlin Heidelberg New York 1982, pp. 101–228Google Scholar
  10. 10.
    Saavedra Rivano, N.: Catégories Tannakiennes, Lecture Notes in Math., vol. 265. Springer, Berlin Heidelberg New York, 1972Google Scholar
  11. 11.
    Jantzen, J.C.: Representations of algebraic groups, Academic Press, Boston, 1987Google Scholar
  12. 12.
    Tits, J.: Tabellen zu den einfachen Lieschen Gruppen und ihren Darstellungen, Lecture Notes in Math., vol. 40. Springer, Berlin Heidelberg New York 1967Google Scholar
  13. 13.
    Onischik, A.L., Vinberg, E.B.: Lie groups and algebraic groups. Springer, Berlin Heidelberg New York 1990Google Scholar
  14. 14.
    Lusztig, G.: Modular representations and quantum groups. In: Classical groups and related topics, Contemp. Math.82, 59–77 (1989)Google Scholar
  15. 15.
    Andersen, H.H., Polo, P., Wen, K.: Representations of quantum algebras. Invent. Math.104, 1–59 (1991)Google Scholar
  16. 16.
    Borel, A.: Properties and linear representations of Chevalley group. Lecture Notes in Math., vol. 131. Springer, Berlin Heidelberg New York 1970, pp. 1–55Google Scholar
  17. 17.
    Kazhdan, D., Verbitsky, M.: Cohomology of restricted quantized universal enveloping algebras. Preprint, Harvard University 1991Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • Sergei Gelfand
    • 1
  • David Kazhdan
    • 2
  1. 1.American Mathematical SocietyProvidenceUSA
  2. 2.Department of MathematicsHarvard UniversityCambridgeUSA

Personalised recommendations