Advertisement

Inventiones mathematicae

, Volume 109, Issue 1, pp 563–594 | Cite as

The weight in Serre's conjectures on modular forms

  • Bas Edixhoven
Article

Keywords

Modular Form 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ash, A., Stevens, G.: Modular forms in characteristicl and special values of theirL-functions. Duke Math. J.53, No. 3 (1986)Google Scholar
  2. 2.
    Boston, N., Lenstra, H.W., Ribet, K.A.: Quotients of group rings arising from two-dimensional representations. C.R. Acad. Sci. Paris, Sér.I 312, 323–328 (1991)Google Scholar
  3. 3.
    Carayol, H.: Sur les représentationsl-adiques associées aux formes modulaires de Hilbert. Ann. Sci. Ec. Norm. Super., IV. Sér.19, 409–468 (1986)Google Scholar
  4. 4.
    Coleman, R.F.: Ap-adic Shimura isomorphism andp-adic periods of modular forms. (Preprint)Google Scholar
  5. 5.
    Coleman, R.F., Voloch, J.F.: Companion forms and Kodaira-Spencer theory (to appear)Google Scholar
  6. 6.
    Cornell, G., Silverman, J.H.: Arithmetic geometry. Berlin Heidelberg New York: Springer 1986Google Scholar
  7. 7.
    Deligne, P., Mumford, D.: The irreducibility of the space of curves of given genus. Publ. Math., Inst. Hautes Etud. Sci.36, 75–125 (1969)Google Scholar
  8. 8.
    Deligne, P., Rapoport, M.: Les schémas de modules des courbes elliptiques. In: Deligne, P., Kuyk, W. (eds.) Modular Functions of One Variable II. (Lect. Notes Math., vol. 349, pp. 143–316) Berlin Heidelberg New York: Springer 1973Google Scholar
  9. 9.
    Deligne, P., Serre, J.-P.: Formes modulaires de poids 1. Ann. Sci. Ec. Norm. Super., IV. Sér.7, 507–530 (1974)Google Scholar
  10. 10.
    Gross, B.H.: A tameness criterion for Galois representations associated to modular forms (mod p). Duke Math. J.61, No. 2, (1990)Google Scholar
  11. 11.
    Jordan, B., Livné, R.: Conjecture “epsilon” for weightk>2. Bull. Am. Math. Soc.21, 51–56 (1989)Google Scholar
  12. 12.
    Grothendieck, A.: Séminaire de géométrie algébrique. (Lect. Notes Math., vols. 151, 152, 153, 224, 225, 269, 270, 288, 305, 340, 589) Berlin Heidelberg New York: Springer 1970–1977Google Scholar
  13. 13.
    Jochnowitz, N.: The local components of the Hecke algebra modl. Trans. Am. Math. Soc.270, 253–267 (1982)Google Scholar
  14. 14.
    Katz, N.M.:p-adic properties of modular schemes and modular forms. In: Kuyk, W., Serre J.-P. (eds.) Modular Functions of One Variable III. (Lect. Notes Math., vol. 350, pp. 69–190) Berlin Heidelberg New York: Springer 1973Google Scholar
  15. 15.
    Katz, N.M.: A result on modular forms in characteristicp. In: Serre, J.-P., Zagier, D.B. (eds.) Modular Functions of One Variable V. (Lect. Notes Math., vol. 601, pp. 53–61) Berlin Heidelberg New York: Springer 1976Google Scholar
  16. 16.
    Katz, N.M., Mazur, B.: Arithmetic moduli of elliptic curves. (Ann. Math. Stud., vol. 108) Princeton: Princeton University Press 1985Google Scholar
  17. 17.
    Mazur, B.: Modular curves and the Eisenstein ideal. Publ. Math., Inst. Hautes Etud. Sci. 47 (1977)Google Scholar
  18. 18.
    Mazur, B., Ribet, K.A.: Two-dimensional representations in the arithmetic of modular curves Astérisque (to appear)Google Scholar
  19. 19.
    Oda, T.: The first De Rham cohomology group and Dieudonné modules. Ann. Sci. Ec. Norm. Super., IV. Sér.2, 63–135 (1969)Google Scholar
  20. 20.
    Raynaud, M.: Spécialisation du foncteur de Picard. Publ. Math. Inst. Hautes Etud. Sci. 38 (1970)Google Scholar
  21. 21.
    Raynaud, M.: Schémas en groupes de type (p,...,p). Bull. Soc. Math. Fr.102, 241–280 (1974)Google Scholar
  22. 22.
    Ribet, K.A.: On modular representations of Gal (Q/ℚ) arising from modular forms. Invent. Math.100, 431–476 (1990)Google Scholar
  23. 23.
    Robert, G.: Congruences entres séries d'Eisenstein, dans le cas supersingulier. Invent. Math.61, 103–158 (1980)Google Scholar
  24. 24.
    Serre, J.-P.: Une interprétation des congruences relatives à la fonction τ de Ramanujan. Séminaire Delange-Pisot-Poitou 1967/68, 14, Oeuvres 80Google Scholar
  25. 25.
    Serre, J.-P.: Valeurs propres des opérateurs de Hecke modulol. Journées arithmétiques Bordeaux. Astérisque 24–25, 109–117 (1975), Oeuvres 104Google Scholar
  26. 26.
    Serre, J.-P., Sur les représentations de degré 2 de Gal (594-1). Duke Math. J. 54, No. 1, (1987)Google Scholar
  27. 27.
    Serre, J.-P., Résumé des cours au Collège de France, 1987–1988Google Scholar
  28. 28.
    Szpiro, L.: Séminaire sur les pinceaux arithmétiques: la conjecture de Mordell. Astérisque 127 (1985)Google Scholar
  29. 29.
    Tate, J.: “p-divisible groups.” In: Proceedings of a conference on local fields at Driebergen, pp. 158–184. Berlin Heidelberg New York: Springer 1967Google Scholar
  30. 30.
    Ulmer, D.L.:L-functions of universal curves over Igusa curves. Am. J. Math.112, 687–712 (1990)Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • Bas Edixhoven
    • 1
  1. 1.Mathematisch Institut BudapestlaanUtrechtThe Netherlands

Personalised recommendations