Inventiones mathematicae

, Volume 109, Issue 1, pp 445–472 | Cite as

The average rank of elliptic curves I

  • Armand Brumer


Elliptic Curf Average Rank 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [BrZ] Brumer, A.: The Average Behaviour of the Zeroes ofL-functions of Elliptic Curves. (In preparation)Google Scholar
  2. [BMcG] Brumer, A., McGuinness, O.: The Behaviour of the Mordelll-Weil Group of Elliptic Curves, Bull. Am. Math. Soc.23, 375–381 (1990)Google Scholar
  3. [Dav] Davenport, H.: Multiplicative Number Theory, 2nd edition. Berlin Heidelberg New York: Springer 1980Google Scholar
  4. [De1] Deligne, P.: Les constantes des équations fonctionelles des fonctions L. In: Deligne, P., Kuyk, W. (eds.) Modular Functions of One Variable II. (Lect. Notes Math., vol. 349) Berlin Heidelberg New York: Springer 1973Google Scholar
  5. [De2] Deligne, P.: La Conjecture de Weil I, II. Publ. Math., Inst. Hautes Étud. Sci.43,52 (1974, 1981)Google Scholar
  6. [FNT] Fouvry, E., Nair, M., Tenenbaum, G.: L'ensemble Exceptionnel dans la Conjecture de Szpiro. (Preprint, received February 1991)Google Scholar
  7. [Go1] Goldfeld, D.: Sur les produits partiels eulériens attachés aux courbes elliptiques. C.R. Acad. Sci., Paris294, 471–474 (1982)Google Scholar
  8. [Go2] Goldfeld, D.: Conjectures on Elliptic Curves over Quadratic Fields. In: Nathanson, M.B. (ed.) Number Theory Carbondale, pp. 108–118 (Lect. Notes Math., vol. 751) Berlin Heidelberg New York: Springer 1979Google Scholar
  9. [GoH] Goldfeld, D., Hoffstein, J.: On the Number of Fourier Coefficients that Determine a Modular Form. (to appear)Google Scholar
  10. [La] Lang, S.: Algebraic Number Theory. Reading: Addison-Wesley 1970Google Scholar
  11. [HSi] Hindry, M., Silverman, J.H.: The canonical height and integral points on elliptic curves. Invent. Math.93, 419–450 (1988)Google Scholar
  12. [KZ] Kramarz, G., Zagier, D.: Numerical Investigations Related to theL-series of Certain Elliptic Curves. J. Indian Math. Soc., New. Ser.52, 51–60 (1987)Google Scholar
  13. [Mo] Moreno, C.: Explicit Formulas in the Theory of Automorphic Forms. (Lect. Notes Math., vol. 626) Berlin Heidelberg New York: Springer 1977Google Scholar
  14. [Me] Mestre, J.-F.: Formules Explicites et Minorations de Conducteurs de variétés Algébriques. Compos. Math.58 (1982)Google Scholar
  15. [Mu] Murty, R.: On Simple Zeroes of CertainL-Series. In: Mollin, R.A. (ed.) Proc. First Conf. Can. Number Theory Assn, pp 427–439. Alberta: Banff 1988Google Scholar
  16. [Oes] Oesterlé, J.: Emplilements de sphères. Séminaire Bourbaki, Exposé 727, June 1990Google Scholar
  17. [Pa] Patterson, S.J.: An Introduction to the theory of the Riemann zeta-function, Cambridge: Cambridge University Press 1988Google Scholar
  18. [Se] Serre, J.-P.: Sur le nombre des points rationnels d'une courbe algébrique sur un corps fini. C.R. Acad. Sci., Paris296, 397–402 (1983)Google Scholar
  19. [Si] Silverman, J.H.: Heights and Elliptic Curves. In: Cornell, G., Silverman, J. (eds.) Arithmetic Geometry, pp. 253–265. Berlin Heidelberg New York: Springer 1986Google Scholar
  20. [Ta] Tate, J.: Number-theoretic Background. In: Borel, A., Casselman, W. (eds.) Automorphic Forms, Representations andL-Functions. (Proc. Symp. Pure Math., vol. 33, Part 2) Providence, RI: Am. Math. Soc. 1979Google Scholar
  21. [TaBS] Tate, J.: On the conjectures of Birch and Swinnerton-Dyer and a geometric analog. Séminaire Bourbaki, Exposé 306, 1966Google Scholar
  22. [We1] Weil, A.: On the Analog of the modular group in characteristic p. In: Functional Analysis, In: Browder, F.E. (ed.) Proceedings of a conference in honor of M. Stone, pp. 211–223. Berlin Heidelberg New York: Springer, Collected Papers, vol. III, pp. 201–213 (1980)Google Scholar
  23. [We2] Weil, A.: Basic Number Theory, 3rd edition. Berlin Heidelberg New York: Springer 1974Google Scholar
  24. [we3] Weil, A.. Dirichlet Series and Automorphic Forms. (Lect. Notes Math., vol. 189) Berlin Heidelberg New York: Springer 1971Google Scholar
  25. [We4] weil, A.: Sur les formules explicites de la théorie des nombres Izv. Akad. Nauk SSSR, Ser. Mat.36, 3–18 (1972), Collected Papers, vol. III, pp. 249–264 (1980)Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • Armand Brumer
    • 1
  1. 1.Department of MathematicsFordham UniversityBronxUSA

Personalised recommendations