Inventiones mathematicae

, Volume 109, Issue 1, pp 405–444 | Cite as

Monstrous moonshine and monstrous Lie superalgebras

  • Richard E. Borcherds


Monstrous Moonshine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alexander, D., Cummins, C., McKay, J., Simons, C.: Completely replicable functions. (Preprint)Google Scholar
  2. 2.
    Atiyah, M.F.: K-theory. New York Amsterdam: Benjamin 1967Google Scholar
  3. 3.
    Borcherds, R.E.: Vertex algebras, Kac-Moody algebras, and the monster. Proc. Natl. Acad. Sci. USA83, 3068–3071 (1986)Google Scholar
  4. 4.
    Borcherds, R.E.: Generalized Kac-Moody algebras. J. Algebra115, 501–512 (1988)Google Scholar
  5. 5.
    Borcherds, R.E.: Central extensions of generalized Kac-Moody algebras. J. Algebra140, 330–335 (1991)Google Scholar
  6. 6.
    Borcherds, R.E.: Lattices like the Leech lattice. J. Algebra130 (No. 1), 219–234 (1990)Google Scholar
  7. 7.
    Borcherds, R.E., Conway, J.H., Queen, L., Sloane, N.J.A.: A monster Lie algebra? Adv. Math.53, 75–79 (1984); this paper is reprinted as Chap. 30 of [12]Google Scholar
  8. 8.
    Borcherds, R.E.: The monster Lie algebra. Adv. Math.83, No. 1 (1990)Google Scholar
  9. 9.
    Borcherds, R.E.: Vertex algebras (to appear)Google Scholar
  10. 10.
    Cartan, H., Eilenberg, S.: Homological Algebra Princeton: Princeton University Press 1956Google Scholar
  11. 11.
    Conway, J.H.: The automorphism group of the 26 dimensional even Lorentzian lattice. J. Algebra80, 159–163 (1983); this paper is reprinted as Chap. 27 of [12]Google Scholar
  12. 12.
    Conway, J.H., Sloane, N.J.A.: Sphere packings lattices and groups (Grundlehren de Math. Wiss., vol. 290) Berlin Heidelberg New York Springer 1988Google Scholar
  13. 13.
    Conway, J.H., Norton, S.: Monstrous moonshine. Bull. Lond. Math. Soc.11, 308–339 (1979)Google Scholar
  14. 14.
    Conway, J.H., Curtis, R.T., Norton, S.P., Parker, R.A., Wilson, R.A.: Atlas of finite groups. Oxford: Clarendon Press 1985Google Scholar
  15. 15.
    Frenkel, I.B.: Representations of Kac-Moody algebras and dual resonance models. In: Flato, et al. (eds.) Applications of group theory in theoretical physics. (Lect. Appl. Math., vol. 21, pp. 325–353) Providence, RI: Am. Math. Soc. 1985Google Scholar
  16. 16.
    Frenkel, I.B., Lepowsky, J., Meurman, A.: Vertex operator algebras and the monster. Boston, MA Academic Press 1988Google Scholar
  17. 17.
    Frenkel, I.B., Lepowsky, J., Meurman, A.: A natural representation of the Fischer-Griess monster with the modular functionJ as character. Proc. Natl. Acad. Sci. USA81, 3256–3260 (1984)Google Scholar
  18. 18.
    Frenkel, I.B., Huang, Y-Z., Lepowsky, J.: On axiomatic formulations of vertex operator algebras and modules. (Preprint)Google Scholar
  19. 19.
    Frenkel, I.B., Garland, H., Zuckerman, G.: Semi-infinite cohomology and string theory. Proc. Natl. Acad. Sci. USA83, 8442–8446 (1986)Google Scholar
  20. 20.
    Garland, H., Lepowsky, J.: Lie algebra homology and the Macdonald-Kac formulas. Invent. Math.34, 37–76 (1976)Google Scholar
  21. 21.
    Goddard, P., Thorn, C.B., Compatibility of the dual Pomeron with unitarity and the absence of ghosts in the dual resonance model, Phys. Lett. B40 (No. 2), 235–238 (1972)Google Scholar
  22. 22.
    Gunning, R.C.: Lectures on modular forms. (Ann. Math. Stud) Princeton: Princeton University Press 1962Google Scholar
  23. 23.
    Kac, V.G.: Infinite dimensional Lie algebras, third ed. Cambridge: Cambridge University Press 1990; (the first and second editions (Basel: Birkhäuser 1983, and C.U.P. 1985) do not contain the material on generalized Kac-Moody algebras that we need.)Google Scholar
  24. 24.
    Kac, V.G., Moody, R.V., Wakimoto, M.: OnE 10. (Preprint)Google Scholar
  25. 25.
    Koike, M.: On Replication Formula and Hecke Operators. Nagoya University (Preprint)Google Scholar
  26. 26.
    Kostant, B.: Lie algebra cohomology and the generalized Borel-Weil theorem. Ann. Math.74, 329–387 (1961)Google Scholar
  27. 27.
    Mahler, K.: On a class of non-linear functional equations connected with modular functions. J. Aust. Math. Soc.22A, 65–118 (1976)Google Scholar
  28. 28.
    Norton, S.P.: More on moonshine, Computational group theory, pp. 185–195. London: Academic Press 1984Google Scholar
  29. 29.
    Norton, S.P.: Generalized Moonshine. (Proc. Symp. Pure Math., vol. 47 pp. 208–209) Providence, RI: Am. Math. Soc. 1987Google Scholar
  30. 30.
    Serre, J.P.: A course in arithmetic. (Grad. Texts Math., vol. 7) Berlin Heidelberg New York: Springer 1973Google Scholar
  31. 31.
    Thompson, J.G.: A finiteness theorem for subgroups of PSL(2,R) which are commensurable with PSL(2,Z). (Proc. Symp. Pure Math., vol. 37, pp. 533–555) Providence, RI: Am. Math. Soc. 1979Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • Richard E. Borcherds
    • 1
  1. 1.Department of pure mathematics and mathematical statisticsCambridgeUK

Personalised recommendations