Inventiones mathematicae

, Volume 109, Issue 1, pp 187–210 | Cite as

Counting characters in blocks, I

  • Everett C. Dade


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alperin, J.: Weights for finite groups. Proc. Symp. Pure Maths.47, 369–379 (1987)Google Scholar
  2. 2.
    Alperin, J., Fong, P.: Weights for symmetric and general linear groups. J. Algebra131, 2–22 (1990)Google Scholar
  3. 3.
    Conway, J., Curtis, R., Norton, S., Parker, R., Wilson, R.: Atlas of finite simple groups. Oxford New York: Oxford University Press 1985Google Scholar
  4. 4.
    Feit, W.: The representation theory of finite groups. Amsterdam New York Oxford: North Holland Publishing Co., 1982Google Scholar
  5. 5.
    Heller, A.: On group representations over a valuation ring. Proc. Nat. Acad. Sci. USA47, 1194–1197 (1961)Google Scholar
  6. 6.
    Huppert, B.: Endliche Gruppen I. Berlin Heidelberg New York: Springer 1967Google Scholar
  7. 7.
    Huppert, B., Blackburn, N.: Finite groups III. Berlin Heidelberg New York: Springer 1982Google Scholar
  8. 8.
    Janko, Z.: A new finite simple group with abelian Sylow 2-subgroups and its characterization. J. Algebra3, 147–186 (1966)Google Scholar
  9. 9.
    Knörr, R., Robinson, G.: Some remarks on a conjecture of Alperin. J. London Math. Soc. (2)39, 48–60 (1989)Google Scholar
  10. 10.
    Robinson, G.: A remark on a conjecture of Alperin preprint (1986)Google Scholar
  11. 11.
    Zariski, O., Samuel, P.: Commutative algebra II. Princeton New York: D. van Nostrand Co. Inc., 1960Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • Everett C. Dade
    • 1
  1. 1.Department of MathematicsUniversity of Illinois at Urbana-ChampaignUrbanaUSA

Personalised recommendations