Inventiones mathematicae

, Volume 107, Issue 1, pp 453–481

On the arithmetic of Siegel-Hilbert cuspforms: Petersson inner products and Fourier coefficients

  • Paul B. Garrett
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Ba] Baily, W.L.: Arithmetic Hilbert modular forms. Rev. Mat. Iberoam.1, 85–119 (1985)Google Scholar
  2. [B] Borel, A.: Introduction to automorphic forms. (Proc. Symp. Pure Math., vol.IX, pp. 199–210 Providence, R.I.:Am. Math. Soc. 1966Google Scholar
  3. [BT] Borel, A., Tits, J.: Groupes reductifs. Publ. Math., Inst. Hautes Étud. Sci.27, 55–151 (1965)Google Scholar
  4. [BrT] Bruhat, F., Tits, J.: BN-paires de type affine et donnees radicielles. C.R. Acad. Sci. Paris, Ser. A263, 598–601 (1966); Groupes simples residuellement deployes sur un corps local. Ibid C.R. Acad. Sci. Paris Ser. A,263, 766–768 (1966); Groupes algebriques simple sur un corps local. Ibid C.R. Acad. Sci. Paris Ser. A,263, 822–825 (1966); Groupes algebriques simple sur un corps local: cohomologie galoisienne, decompositions d'Iwasawa et de Cartan. Ibid. C.R. Acad. Sci. Paris Ser. A,263, 867–869 (1966)Google Scholar
  5. [C] Cartier, P.: Representations of reductivep-adic groups: a survey. (Proc. Symp. Pure Math., vol. 33, part 1, pp. 111–156) Providence, R.I.: Am. Math. Soc. 1979Google Scholar
  6. [G1] Garrett, P.B.: Arithmetic properties of Fourier-Jacobi expansions of automorphic forms in several variables. Am. J. Math.103, 1103–1134 (1981)Google Scholar
  7. [G4] Garrett, P.B.: Pullbacks of Eisenstein series; applications. In: Satake, I., Morita, Y. (eds.) Automorphic Forms of Several Variables, pp. 114–137, Boston: Birkhäuser 1984Google Scholar
  8. [GPR] Gelbart, S., Piatetski-Shapiro, I.I., Rallis, S.: Explicit constructions of automorphicL-functions. (Lect. Notes Math., vol. 1254) Berlin Heidelberg New York: Springer 1987Google Scholar
  9. [Go1] Godement, R.: Fonctions holomorphes de carre sommable dans le demi-plan de Siegel. Ou l'on generalise un integrale etudiee par C.L. Siegel, et generalization de la fonction Θ. In. Semin. H. Cartan, Paris: Ec. Norm. Supér. 1957–58Google Scholar
  10. [Go2] Godement, R.: Series d'Eisenstein. In: Semin. H. Cartan. Paris: Éc. Norm. Supér. 1957–58Google Scholar
  11. [Go3] Godement, R.: Domaines fondamentaux des groupes arithmetiques. Semin. Bourbak:257 (1962/63)Google Scholar
  12. [H1] Harris, M.: Maass operators and Eisenstein series. Math. Ann.258, 135–144 (1981)Google Scholar
  13. [H2] Harris, M.: Special values of zeta functions attached to Siegel modular forms. Ann. Sci. Éc. Norm. Super.14, 77–120 (1981)Google Scholar
  14. [H3] Harris, M.: Eisenstein series on Shimura varieties. Ann. Math.119, 59–94 (1984)Google Scholar
  15. [K1] Klingen, H.: Über die Werte der Dedekindschen Zetafunktionen. Math. Ann.145, 265–272 (1962)Google Scholar
  16. [K2] Klingen, H.: Über den arithmetischen Charakter der Fourierkoeffizienten von Modulformen. Math. Ann.147, 176–188 (1962)Google Scholar
  17. [Kn] Kneser, M.: Starke Approximation in algebraischen Gruppen. J. Reine Angew. Math.218, 190–203 (1965)Google Scholar
  18. [M] Milne, J.S.: Canonical models of (mixed) Shimura varieties and automorphic vector bundles. In: Clozel, L., Milne, J.S. (eds.) Automorphic Forms, Shimura Varieties, andL-functions, pp. 283–414. Boston: Academic Press 1990Google Scholar
  19. [S] Satake, I.: Theory of spherical functions on reductive algebraic groups overp-adic fields. Publ. Math., Inst. Hautes Étud. Sci.18, 1–69 (1963)Google Scholar
  20. [Sh1] Shimura, G.: On canonical models of arithmetic quotients of bounded symmetric domains I, II. Ann. Math.91, 144–22 (1970);92, 528–549 (1970)Google Scholar
  21. [Sh2] Shimura, G.: On some properties of modular forms in one and several variables. Ann. Math.102, 491–515 (1975)Google Scholar
  22. [Sh3] Shimura, G.: On Fourier cofficients of modular forms of several variables. Nachr. Akad. Wiss. Gött.17, 261–268 (1975)Google Scholar
  23. [Sh4] Shimura, G.: The special values of the zeta functions associated with Hilbert modular forms. Duke J. Math.50, 637–679 (1978)Google Scholar
  24. [Sh5] Shimura, G.: On Eisenstein series. Duke J. Math.50, 417–476 (1983)Google Scholar
  25. [Sh6] Shimura, G.: Algebraic relations between critical values of zeta functions and inner products. Am. J. Math.105, 253–285 (1983)Google Scholar
  26. [Si] Siegel, C.L.: Einfuhrung in die Theorie der Modulfunktionenn-ten Grades. Math. Ann.116, 617–657 (1939)Google Scholar
  27. [T] Tits, J.: Reductive groups over local fields. (Proc. Symp. Pure Math., vol. 33 part I, pp. 29–70) Providence, RI: Am. Math. Soc. 1979Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • Paul B. Garrett
    • 1
  1. 1.Department of MathematicsUniversity of MinnesotaMinneapolisUSA

Personalised recommendations