Inventiones mathematicae

, Volume 107, Issue 1, pp 151–202 | Cite as

Compactifications of moduli spaces in real algebraic geometry

  • R. Silhol
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [B-B] Baily, W.L., Borel, A.: Compactification of arithmetic quotients of bounded symmetric domains Ann. Math.84, 442–528 (1966)Google Scholar
  2. [Ba] Bardelli, F.: Semistable curves, their dual graphs and some applications. In: Guenot, J., Struppa, D. (eds.) Seminar in complex Analysis and Geometry, Seminar, Rende 1987, pp. 47–65. Rende: EditEl 1988Google Scholar
  3. [Bou] Bourbaki, N.: Eléments de Mathématiques. Algèbre Chap. 4 à 7. Paris: Masson 1981; Topologie Générale Chap. 1 à 4. Paris: Hermann 1971Google Scholar
  4. [Ca] Séminaire Henri Cartan 1957/1958: Fonctions Automorphes, vol. 1 et 2, Paris: Secretariat mathématique 1958Google Scholar
  5. [Car] Carlson, J.A.: Extensions of mixed Hodge structures. In: Beauville, A. (ed.) Journées de géométrie algébrique d'Angers 1979, pp. 107–127. Alphen an den Rijn: Sijthoff & Noordhoff 1980Google Scholar
  6. [Ch] Chai, C.-L.: Compactification of Siegel Moduli Schemes. (Lond. Math. Soc. Lect. Note Ser.) Cambridge: Cambridge University Press 1985Google Scholar
  7. [Cl et al.] Clemens, C.H. et al.: Seminar on degeneration of algebraic varieties. Princeton: Institute for Advanced Study 1969–70Google Scholar
  8. [Fa] Fay, J.D.: Theta Functions an Riemann Surfaces (Lect. Notes Math., vol. 352) Berlin Heidelberg New York 1973Google Scholar
  9. [Gr-Ha] Gross, B., Harris, J.: Real Algebraic Curves. Ann. Sci. Éc. Norm. Super.14, 157–182 (1981)Google Scholar
  10. [Mu] Mumford, D.: Abelian varieties. Oxford: Oxford University Press 1970Google Scholar
  11. [Na] Namikawa, Y.: Toroidal Compactification of Siegel Spaces. (Lect. Notes Math., vol. 812). Berlin Heidelberg New York: Springer 1980Google Scholar
  12. [Né] Neron, A.: Modèles minimaux des variétés abéliennes sur les corps locaux et globaux. Publ. Math., Inst. Hautes Étud. Sci.21, 361–483 (1964)Google Scholar
  13. [Ro] Robert, A.: Elliptic Curves. (Lect. Notes Math., vol. 326) Berlin Heidelberg New York: Springer 1973Google Scholar
  14. [Se1] Seppälä, M.: Complex algebraic curves with real moduli. J. Reine Angew. Math.387, 209–220 (1988)Google Scholar
  15. [Se2] Seppälä, M.: Real algebraic curves in the moduli space of complex curves. Compos. Math.74, 259–283 (1990)Google Scholar
  16. [Se3] Seppälä, M.: Moduli Space of stable Real Algebraic Curves. Institut Mittag-Leffler, Report No 12, 1–28, (1989/90) (Preprint), Ann. Sci. Éc. Norm. Supér. (to appear)Google Scholar
  17. [Se & Si] Seppälä, M., Silhol, R.: Moduli Spaces for Real Algebraic Curves and Real Abelian Varieties. Math. Z.201, 151–165 (1989)Google Scholar
  18. [Ser] Serre, J.-P.: Groupes Algébriques et Corps de Classes. Paris: Hermann 1959Google Scholar
  19. [Sh] Shimura, G.: On the field of rationality for an abelian variety. Nagoya Math. J.45, 167–178 (1972)Google Scholar
  20. [Si1] Silhol, R.: Real abelian varieties and the theory of Comessatti, Math. Z.181, 345–364 (1982)Google Scholar
  21. [Si2] Silhol, R.: Real Algebraic Surfaces. (Lect. Notes Math., vol. 1392) Berlin Heidelberg New York: Springer 1989Google Scholar
  22. [We1] Weil, A.: Reduction des formes quadratiques. Séminaire H. Cartan, 1957/58, Exposé 1. Paris: Secretariat mathématique 1958Google Scholar
  23. [We2] Weil, A.: Remarques sur un mémoire d'Hermite. Arch. Math.,5, 197–202 (1954)Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • R. Silhol
    • 1
  1. 1.Department de Mathématiques, URA 1407Université Montpellier 2Montpellier Cedex 5France

Personalised recommendations