Inventiones mathematicae

, Volume 107, Issue 1, pp 135–150 | Cite as

LocalL-factors of motives and regularized determinants

  • Christopher Deninger
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [A] Ahlfors, L.V.: Complex Analysis. New York: McGraw-Hill 1966Google Scholar
  2. [Ba] Barner, K.: On A. Weil's explicit formula. J. Reine Angew. Math.323, 139–152 (1981)Google Scholar
  3. [C-V] Cartier, P., Voros, A.: Une nouvelle interprétation de la formule des traces de Selberg. (Grothendieck Festschrift II) Boston Basel Stuttgart: Birkhäuser 1991Google Scholar
  4. [D] Deninger, C.: On the Γ-factors attached to motives. Invent. Math.104, 245–261 (1991)Google Scholar
  5. [E] Erdelyi, A. et al.: Higher transcendental functions, vol. I. Bateman Manuscript project. New York: McGraw-Hill 1953Google Scholar
  6. [F] Fontaine, J.-M.: Modules galoisiens, modules filtrés et anneaux de Barsotti-Tate. In: Journée de Géométrie Algébrique de Rennes (Astérisque, vol. 65, pp. 3–80) Paris: Soc. Math. de France 1979Google Scholar
  7. [G] Grothendieck, A.: Modèles de Néron et Monodromie. Exp IX in SGA 7, I. (Lect. Notes Math., vol. 288) Berlin Heidelberg New York: Springer 1972Google Scholar
  8. [J1] Jannsen, U.: On thel-adic cohomology of varieties over number fields and its Galois cohomology. In: Y. Ihara, K. Ribet, J.-P. Serre (eds.) Galois Groups over ℚ, pp. 315–353. (Publ., Math. Sci. Res. Inst., vol. 16) Berlin Heidelberg New York: Springer 1989Google Scholar
  9. [J2] Jannsen, U.: Motivic cohomology,l-adic cohomology and vanishing orders ofL-functions. (Preprint 1990)Google Scholar
  10. [K1] Kurokawa, N.: Parabolic components of zeta functions. Proc. Japan Acad, Ser. A64, 21–24 (1988)Google Scholar
  11. [K2] Kurokawa, N.: Analyticity of Dirichlet series over prime powers. (Lect. Notes Math., vol. 1434, pp. 168–177) Berlin Heidelberg New York: Springer 1990Google Scholar
  12. [K3] Kurokawa, N.: Multiple zeta functions: an example. In: Zeta functions in geometry. Adv. Stud. Pure Math. 1991 (to appear)Google Scholar
  13. [Se] Serre, J.P.: Facteurs locaux des fonctions zêta des variétés algébriques (définitions et conjectures). Séminaire Delange-Pisot-Poitou, exposé 19, 1969/70Google Scholar
  14. [So] Soulé, Ch.: Letter to the author. February 13, 1991Google Scholar
  15. [Ta] Tate, J.: Number theoretical background. In: A. Borel, W. Casselman (eds.): Automorphic forms, representations andL-functions, pp. 3–26. Corvallis 1977. (Proc. Symp. Pure Math. XXXIII, 2) Providence: Am. Math. Soc. 1979Google Scholar
  16. [V] Voros, A.: Spectral functions and the Selberg zeta function. Commun. Math. Phys.111, 439–465 (1987)Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • Christopher Deninger
    • 1
  1. 1.Mathematisches InstitutMünsterFederal Republic of Germany

Personalised recommendations