Inventiones mathematicae

, Volume 115, Issue 1, pp 1–40

Kodaira dimension of moduli space of vector bundles on surfaces

Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Atiyah, M.F., MacDonald, L.G.: Introduction to Commutative Algebra. Reading, MA: Addison-Wesley 1969Google Scholar
  2. 2.
    Artamkin, I.V.: On deformation of sheaves. Math. USSR, Izv.32 (no. 3), 663–668 (1989)Google Scholar
  3. 3.
    Beauville, A.: Fibrés de rang deux sur une courbe, fibré déterminant et fonctions thêta. II Bull. Soc. Math. Fr.119 (no. 3), 259–292 (1991)Google Scholar
  4. 4.
    Donaldson, S.K.: Polynomial invariants for smooth four-manifolds. Topology29(no. 3), 257–315 (1986)Google Scholar
  5. 5.
    Drezet, J.-M., Narasimhan, M.S.: Group de Picard des varietes de modules de fibres semistables sur les coubes algebriques. Invent. Math.97, 53–94 (1989)Google Scholar
  6. 6.
    Friedman, R.: Vector bundles over surfaces (to be published)Google Scholar
  7. 7.
    Gieseker, D.: On the moduli of vector bundles on the algebraic surface. Ann. Math.106, 45–60 (1977)Google Scholar
  8. 8.
    Griffith, P., Harris, J.: Principles of algebraic geometry. New York: Wiley-Interscience 1978Google Scholar
  9. 9.
    Grothendieck, A.: Techniques de construction et théorèmes d'existence en géométrie algébrique IV: les schémas de Hilbert. Sémin. Bourbaki (1960–61)Google Scholar
  10. 10.
    Hartshorne, R.: Algebraic geometry. (Grad. Texts Math., Vol. 52) Berlin Heidelberg New York: Springer 1977Google Scholar
  11. 11.
    Hartshorne, R.: Residues and duality. (Lect. Notes Math., Vol. 20) Berlin Heidelberg New York: Springer 1966Google Scholar
  12. 12.
    Kirwan, F.C.: Partial desingularizations of quotients of nonsingular varieties and their Betti numbers. Ann. Math.122, 41–85 (1985)Google Scholar
  13. 13.
    Knudsen, F., Mumford, D.: The projectivity of the moduli space of stable curves. I. Preliminaries on ‘det’ and ‘div’. Math. Scand.39, 19–55 (1976)Google Scholar
  14. 14.
    Laudal, O.A.: Formal Moduli of Algebraic Structures (Lect. Notes Math., Vol. 754) Berlin Heidelberg New York: Springer 1979Google Scholar
  15. 15.
    Li, J.: Algebraic geometric interpretation of Donaldson's polynomial invariants. J. Differ. Geom.37, 417–466 (1993)Google Scholar
  16. 16.
    Maruyama, M.: Moduli of stable sheaves I, II. J. Math. Kyoto Univ.17, 91–126 (1977); J. Math. Kyoto Univ.18, 557–614 (1978)Google Scholar
  17. 17.
    Mori, S.: Projective manifolds with ample tangent bundles. Ann. Math.,110, 593–606 (1979)Google Scholar
  18. 18.
    Mukai, S.: Symplectic structure on the moduli space of sheaves on an Abelian or K3 surfaces. Invent. Math.77, 101–116 (1984)Google Scholar
  19. 19.
    Mumford, D.: Geometric Invariant Theory. Berlin Heidelberg New York: Springer 1982Google Scholar
  20. 20.
    Mumford, D.: The red book of Varieties and schemes. (Lect. Notes Math., Vol. 1358) Berlin Heidelberg New York: Springer 1980Google Scholar
  21. 21.
    Mumford, D.: Theta characteristics of an algebraic curve. Ann. Sci. Éc. Norm. Super4, 181–192 (1971)Google Scholar
  22. 22.
    O'Grady, K.G.: Algebro-geometric analogues of Donaldson's polynomials. Invent. Math.107, 351–395 (1992)Google Scholar
  23. 23.
    Qin, Z.: Birational properties of moduli spaces of stable locally free rank-2 sheaves on algebraic surfaces. Manuscripta Math.72, 163–180 (1991)Google Scholar
  24. 24.
    Qin, Z.: Moduli spaces of stable rank-:2 bundles on ruled surfaces. Invent. Math.110 (no. 3), 615–626 (1992)Google Scholar
  25. 25.
    Tyurin, A.N.: Symplectic structures on the moduli variety of vector bundles on an algebraic surface withp g≠0. Izv. Akad. Nauk. SSSR, Ser. Mat.52, 149–195 (1978)Google Scholar
  26. 26.
    Zuo, K.: Generic smoothness of the moduli of rank two stable bundles over an algebraic surface. (Preprint)Google Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • Jun Li
    • 1
  1. 1.Department of MathematicsStanford UniversityStanfordUSA

Personalised recommendations