On the poles of regular differentials of singular curves

  • Karl-Otto Stöhr
Article

Abstract

We describe the pole behaviour of the regular differentials of projective algebraic curves in terms of discrete invariants of the singular points.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [B] V. Bayer,Semigroup of two irreducible algebroid plane curves, manuscripta math.39 (1985), 207–241.Google Scholar
  2. [D1] F. Delgado de la Mata,The semigroup of values of a curve singularity with several branches, manuscripta math.59(1987), 347–374.Google Scholar
  3. [D2] F. Delgado de la Mata,Gorenstein curves and symmetry of the semigroup of values, manuscripta math.61 (1988), 285–296.Google Scholar
  4. [F] E.S. Freitas, “Curvas não-classicas de Gorenstein de gênero aritmético 3 e 4”, Tese de doutorado, IMPA, Rio de Janeiro 1992 (Announcement in Atas da XI Escola de Algebra, São Paulo 1990).Google Scholar
  5. [Ga] V.M. Galkin,Zeta functions of some one-dimensional rings, Izv. Akad. Nauk. SSSR Ser. Mat.37 (1973), 3–19.Google Scholar
  6. [G] A. Garcia,Semigroups associated to singular points of plane curves, J. reine angew. Math.336 (1982), 165–184.Google Scholar
  7. [GL] A. Garcia and R.F. Lax,Weierstrass weight of Gorenstein singularities with one or two branches, Preprint.Google Scholar
  8. [G1] B. Green,On the Riemann-Roch theorem for orders in the ring of valuation vectors of a function field, manuscripta math.60 (1988), 259–276.Google Scholar
  9. [G2] B. Green,Functional equations for zeta-functions of non-Gorenstein orders in global fields, manuscripta math.64 (1989), 485–502.Google Scholar
  10. [Ha] R. Harthshorne, “Algebraic Geometry”, Springer-Verlag, New York 1977.Google Scholar
  11. [H] H. Hironaka,On the arithmetic genera and the effective genera of algebraic curves, Mem. Kyoto30 (1957), 177–195.Google Scholar
  12. [HK] J. Herzog and H. Kunz, “Der kanonische Modul eines Cohen-Macaulay Rings”, Springer Lecture Notes in Math.238 (1971).Google Scholar
  13. [HW] H. Hasse and E. Witt,Zyklische unverzweigte Erweiterungskörper vom Primzahlgrade p über einem algebraischen Funktionenkörper der Characteristik p, Monatsh. Math. Phys.43 (1936), 477–492.Google Scholar
  14. [J] W.E. Jenner,On zeta-functions of number fields, Duke Math. J.36 (1969), 669–671.Google Scholar
  15. [K1] H.I. Karakas,On Rosenlicht's generalization of Riemann-Roch theorem and generalized Weierstrass points, Arch. Math.27 (1976), 134–147.Google Scholar
  16. [K2] H.I. Karakas,Application of generalized Weierstrass points: divisibility of divisor classes, J. reine angew. Math.299/300 (1978), 388–395.Google Scholar
  17. [Ka] N. Katz,Une formule de congruence pour la fonction ζ, in: SGA 7 II (1967–1969), Springer Lecture Notes in Math.340, 401–438.Google Scholar
  18. [K] E. Kunz,The value-semigroup of a one-dimensional Gorenstein ring, Proc. Amer. Math. Soc.25 (1970), 748–751.Google Scholar
  19. [L] S. Lang, “Introduction to algebraic and abelian functions”, Addison-Wesley, Reading 1972.Google Scholar
  20. [LW] R.F. Lax and C. Widland,Gap sequences at a singularity, Pac. J. Math.150 (1991), 107–115.Google Scholar
  21. [M] Ju. I. Manin,The Hasse-Witt matrix of an algebraic curve, Amer. Math. Soc. Transl.45 (1965), 245–264.Google Scholar
  22. [R1] P. Roquette,Über den Riemann-Rochschen Satz in Funktionenkörpern vom Transzendenzgrad 1, Math. Nachr.19 (1958), 375–404.Google Scholar
  23. [R2] P. Roquette,Über den Singularitätsgrad von Teilringen in Funktionenkörpern, Math. Z.77 (1961), 228–240.Google Scholar
  24. [R] M. Rosenlicht,Equivalence relations on algebraic curves, Ann. of Math. (2)56 (1952), 169–191.Google Scholar
  25. [Sch] F.K. Schmidt,Analytische Zahlentheorie in Körpern der Charakteristik p, Math. Z.33 (1931), 1–32.Google Scholar
  26. [S1] J.-P. Serre,Sur la topologie des variétés algébriques en caracteristic p, Symp. Int. Top. Alg., México City 1958, 24–53.Google Scholar
  27. [S2] J.-P. Serre, “Groupes algébriques et corps de classes”, Hermann (1959), Paris.Google Scholar
  28. [S3] J.-P. Serre, “Zeta andL functions, Arithmetical Algebraic Geometry”, Harper and Row, New York 1965, 82–92.Google Scholar
  29. [St] H. Stichtenoth,Die Hasse-Witt-Invariante eines Kongruenzfunktionenkörpers, Arch. Math.33 (1979), 357–360.Google Scholar
  30. [S] K.-O. Stöhr,On the moduli spaces of Gorenstein curves with symmetric Weierstrass semigroups, J. reine angew. Math., to appear.Google Scholar
  31. [SV] K.-O. Stöhr and P. Viana,A study of Hasse-Witt matrices by local methods, Math. Z.200 (1989), 397–407.Google Scholar
  32. [SV1] K.-O. Stöhr and J.F. Voloch,Weierstrass points and curves over finite fields, Proc. London Math. Soc. (3)52 (1986), 1–19.Google Scholar
  33. [SV2] K.-O. Stöhr and J.F. Voloch,A formula for the Cartier operator on plane algebraic curves, J. reine angew. Math.377 (1987), 49–64.Google Scholar
  34. [Wa] R. Waldi,Wertehalbgruppe and Singularität einer ebenen algebraischen Kurve, Dissertation, Regensburg, 1972.Google Scholar
  35. [W] A. Weil,Zur algebraischen Theorie der algebraischen Funktionen, J. reine angew. Math.179 (1938), 129–133.Google Scholar
  36. [WL] G. Widland and R. F. Lax,Weierstrass points on Gorenstein curves, Pac. J. Math.142 (1990), 197–208.Google Scholar

Copyright information

© Sociedade Brasileira de Matemática 1993

Authors and Affiliations

  • Karl-Otto Stöhr
    • 1
  1. 1.Instituto de Matemática Pura e Aplicada, IMPARio de JaneiroBrazil

Personalised recommendations