The VLDB Journal

, Volume 3, Issue 4, pp 357–399 | Cite as

An introduction to spatial database systems

  • Ralf Hartmut Güting
Article

Abstract

We propose a definition of a spatial database system as a database system that offers spatial data types in its data model and query language, and supports spatial data types in its implementation, providing at least spatial indexing and spatial join methods. Spatial database systems offer the underlying database technology for geographic information systems and other applications. We survey data modeling, querying, data structures and algorithms, and system architecture for such systems. The emphasis is on describing known technology in a coherent manner, rather than listing open problems.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdelmoty, A.I., Williams, M.H., and Paton, N.W. Deduction and deductive databases for geographic data handling.Proceedings of the Third International Symposium on Large Spatial Databases, Singapore, 1993.Google Scholar
  2. Abel, D.J. SIRO-DBMS: A database tool kit for geographical information systems.International Journal of Geographical Information Systems, 3:103–116, 1989.Google Scholar
  3. Abel, D.J. and Ooi, B.C. eds.Proceedings of the Third International Symposium on Large Spatial Databases, Singapore, 1993.Google Scholar
  4. Abel, D.J. and Smith, J.L. A data structure and algorithm based on a linear key for a rectangle retrieval problem.Computer Vision, Graphics, and Image Processing, 24:1–13, 1983.Google Scholar
  5. Abiteboul, S. and Beeri, C. On the power of languages for the manipulation of complex objects. Technical Report 846, Paris: INRIA, 1988.Google Scholar
  6. Agrawal, R. ALPHA: An extension of relational algebra to express a class of recursive queries.Proceedings of the IEEE Data Engineering Conference, Los Angeles, 1987.Google Scholar
  7. Aref, W. and Samet, H. Extending a DBMS with spatial operations.Proceedings of the Second International Symposium on Large Spatial Databases, Zürich, 1991a.Google Scholar
  8. Aref, W. and Samet, H. Optimization strategies for spatial query processing.Proceedings of the Seventeenth International Conference on Very Large Data Bases, Barcelona, 1991b.Google Scholar
  9. Bancilhon, F., Briggs, T., Khoshafian, S., and Valduriez, P. FAD, a powerful and simple database language.Proceedings of the Thirteenth International Conference on Very Large Data Bases, Brighton, 1987.Google Scholar
  10. Batory, D.S., Barnett, J.R., Garza, J.F., Smith, K.P., Tsukuda, K., Twichell, B.C., and Wise, T.E. GENESIS: An extensible database management system.IEEE Transactions on Software Engineering, 14:1711–1730, 1988.Google Scholar
  11. Baumann, P. Management of multidimensional discrete data.VLDB Journal, 3(4):401–444, 1994.Google Scholar
  12. Bauzer-Medeiros, C. and Pires, F. Databases for GIS.ACMSIGMOD Record, 23:107–115, 1994.Google Scholar
  13. Becker, L. and Güting, R.H. Rule-based optimization and query processing in an extensible geometric database system.ACM Transactions on Database Systems, 17:247–303, 1992.Google Scholar
  14. Becker, L., Hinrichs, K., and Finke, U. A new algorithm for computing joins with grid files.Proceedings of the Ninth International Conference on Data Engineering, Vienna, 1993.Google Scholar
  15. Beckmann, N., Kriegel, H.P., Schneider, R., and Seeger, B. TheR *-tree: An efficient and robust access method for points and rectangles.Proceedings of the ACM SIGMOD Conference, Atlantic City, NJ, 1990.Google Scholar
  16. Bentley, J.L. Multidimensional binary search trees used for associative searching.Communications of the ACM 18:509–517, 1975.Google Scholar
  17. Berman, R.R. and Stonebraker, M. GEO-QUEL: A system for the manipulation and display of geographic data.Computer Graphics 11:186–191, 1977.Google Scholar
  18. Brinkhoff, T., Kriegel, H.P., and Schneider, R. Comparison of approximations of complex objects used for approximation-based query processing in spatial database systems.Proceedings of the Ninth International Conference on Data Engineering, Vienna, 1993a.Google Scholar
  19. Brinkhoff, T., Kriegel, H.P., and Seeger, B. Efficient processing of spatial joins usingR-trees.Proceedings of the ACM SIGMOD Conference, Washington, DC, 1993b.Google Scholar
  20. Brinkhoff, T., Kriegel, H.P., Schneider, R., and Seeger, B. Multi-step processing of spatial joins.Proceedings of the ACM SIGMOD Conference Minneapolis, 1994.Google Scholar
  21. Buchmann, A., Günther, O., Smith, T.R., and Wang Y.F., eds.Proceedings of the First International Symposium on Large Spatial Databases, Santa Barbara, 1989.Google Scholar
  22. Chang, N.S., and Fu, K.S.: A relational database system for images. In: Chang, S.K. and Fu, K.S., eds.,Pictorial Information Systems, Berlin: Springer, 1980, pp. 288–321.Google Scholar
  23. Chang, S.K., Jungert, E., and Li, Y. The design of pictorial databases based upon the theory of symbolic projections.Proceedings of the First International Symposium on Large Spatial Databases, Santa Barbara, 1991.Google Scholar
  24. Chu, W.W., Ieong, I.T., and Taira, R.K. A semantic modeling approach for image retrieval by content.VLDB Journal, 3(4):445–477, 1994.Google Scholar
  25. Clementini, E., Di Felice, P., and van Oosterom, P. A small set of formal topological relationships suitable for end-user interaction.Proceedings of the Third International Symposium on Large Spatial Databases, Singapore, 1993.Google Scholar
  26. Cruz, I.F., Mendelzon, A.O., and Wood, P.T. A graphical query language supporting recursion.Proceedings of the ACM SIGMOD Conference, 1987.Google Scholar
  27. Cui, Z., Cohn, A.G., and Randell, D.A. Qualitative and topological relationships in spatial databases.Proceedings of the Third International Symposium on Large Spatial Databases, Singapore, 1993.Google Scholar
  28. David, B., Raynal, L., Schorter, G., and Mansart V. GeO2: Why objects in a geographical DBMS?Proceedings of the Third International Symposium on Large Spatial Databases, Singapore, 1993.Google Scholar
  29. Dayal, U., Manola, F., Buchmann, A., Chakravarthy, U., Goldhirsch, D., Heiler, S., Orenstein, J., and Rosenthal, A. Simplifying complex objects: The PROBE approach to modelling and querying them. In: Schek, H.-J. and Schlageter, G., eds.,Proceedings GI-Fachtagung Datenbanksysteme in Büro, Technik, und Wissenschaft, Darmstadt, 1987.Google Scholar
  30. Dröge, G. and Schek, H.-J. Query-adaptive data space partitioning using variablesize storage clusters.Proceedings of the Third International Symposium on Large Spatial Databases, Singapore, 1993.Google Scholar
  31. Dröge, G., Schek, H.-J., and Wolf, A. Erweiterbarkeit in DASDBS (Extensibility in DASDBS).Informatik Forschung und Entwicklung, 5:162–176, 1990.Google Scholar
  32. Egenhofer, M. A formal definition of binary topological relationships.,Proceedings of the Third International Conference on the Foundations of Data Organization and Algorithms, Paris, 1989.Google Scholar
  33. Egenhofer, M. Extending SQL for cartographic display.Cartography and Geographic Information Systems, 18:230–245, 1991a.Google Scholar
  34. Egenhofer, M. Reasoning about binary topological relations.Proceedings of the Second International Symposium on Large Spatial Databases, Zürich, 1991b.Google Scholar
  35. Egenhofer, M.. Why not SQL!International Journal of Geographical Information Systems, 6:71–85, 1992.Google Scholar
  36. Egenhofer, M. Spatial SQL: A query and presentation language.IEEE Transactions on Knowledge and Data Engineering, 6:86–95, 1994.Google Scholar
  37. Egenhofer, M. and Frank, A. Towards a spatial query language: User interface considerations.Proceedings of the Fourteenth International Conference on Very Large Data Bases, Los Angeles, 1988.Google Scholar
  38. Egenhofer, M., Frank, A., and Jackson, J.P. A topological data model for spatial databases.Proceedings of the First International Symposium on Large Spatial Databases, Santa Barbara, 1989.Google Scholar
  39. Egenhofer, M. and Herring, J. A mathematical framework for the definition of topological relationships.Fourth International Symposium on Spatial Data Handling, Zürich, 1990.Google Scholar
  40. Egenhofer, M. and Herring, J. Categorizing binary topological relationships between regions, lines, and points in geographic databases. Technical Report. Department of Surveying Engineering, University of Maine, Orono, ME, 1992.Google Scholar
  41. Erwig, M. and Güting, R.H. Explicit graphs in a functional model for spatial databases. FernUniversität Hagen, Informatik-Report 110, 1991. To appear inIEEE Transactions on Knowledge and Data Engineering.Google Scholar
  42. Faloutsos, C., Sellis, T., and Roussopoulos, N. Analysis of object-oriented spatial access methods.Proceedings of the ACM SIGMOD Conference, San Francisco, 1987.Google Scholar
  43. Frank, A. Application of DBMS to land information systems.Proceedings of the Seventh International Conference on Very Large Data Bases, Cannes, 1981.Google Scholar
  44. Frank, A. MAPQUERY: Data base query language for retrieval of geometric data and their graphical representation.Computer Graphics, 16:199–207, 1982.Google Scholar
  45. Frank, A. Overlay processing in spatial information systems.Proceedings of the Eighth International Symposium on Computer-Assisted Cartography (Auto-Carto 8), Baltimore, MD, 1988.Google Scholar
  46. Frank, A. Properties of geographic data: Requirements for spatial access methods.Proceedings of the Second International Symposium on Large Spatial Databases, Zürich, 1991.Google Scholar
  47. Frank, A. Qualitative spatial reasoning about distances and directions in geographic space.Journal of Visual Languages and Computing, 3:343–371, 1992.Google Scholar
  48. Frank, A. and Kuhn, W. Cell graphs: A provable correct method for the storage of geometry.Proceedings of the Second International Symposium on Spatial Data Handling, Seattle, 1986.Google Scholar
  49. Franklin, W.R. Cartographic errors symptomatic of underlying algebra problems.Proceedings of the First International Symposium on Spatial Data Handling, Zürich, 1984.Google Scholar
  50. Freeman, H. and Ahn, J. On the problem of placing names in a geographic map.International Journal on Pattern Recognition and Artificial Intelligence 1:121–140, 1987.Google Scholar
  51. Freeston, M.W. The BANG file: A new kind of grid file.Proceedings of the ACM SIGMOD Conference, San Francisco, 1987.Google Scholar
  52. Freksa, C., Qualitative spatial reasoning. In: Mark, D.M. and Frank, A., eds,Cognitive and Linguistic Aspects of Geographic Space, Dordrecht: Kluwer, 1991.Google Scholar
  53. Gardarin, G., Cheiney, J.P. Kiernan, G. Pastre, D. and Stora, H. Managing complex objects in an extensible relational DBMS.Proceedings of the Fifteenth International Conference on Very Large Data Bases, Amsterdam, 1989.Google Scholar
  54. Gargano, M., Nardelli, E., and Talamo, M. Abstract data types for the logical modeling of complex data.Information Systems, 16:565–584, 1991.Google Scholar
  55. Gargantini, I. An effective way to represent quadtrees.Communications of the ACM, 25:905–910, 1982.Google Scholar
  56. Graefe, G. and DeWitt, D.J. The EXODUS optimizer generator.Proceedings of the ACM SIGMOD Conference, San Francisco, 1987.Google Scholar
  57. Greene, D. An implementation and performance analysis of spatial data access methods.Proceedings of the Fifth International Conference on Data Engineering, Los Angeles, 1989.Google Scholar
  58. Greene, D. and Yao, F. Finite-resolution computational geometry.Proceedings of the Twenty-Seventh IEEE Symposium on Foundations of Computer Science, Toronto, 1986.Google Scholar
  59. Günther, O. Efficient structures for geometric data management.Lecture Notes in Computer Science 337, Springer, 1988.Google Scholar
  60. Günther, O. Efficient computation of spatial joins.Proceedings of the Ninth International Conference on Data Engineering, Vienna, 1993.Google Scholar
  61. Günther, O. and Bilmes, J. The implementation of the cell tree: Design alternatives and performance evaluation.Proceedings of the GI-Fachtagung Datenbanksysteme in Büro, Technik und Wissenschaft, Informatik-Fachberichte, 1989.Google Scholar
  62. Günther, O. and Buchmann, A. Research issues in spatial databases,ACMSIGMOD Record, 19:61–68, 1990.Google Scholar
  63. Günther, O. and Schek, H.-J., eds.Proceedings of the Second International Symposium on Large Spatial Databases, Zürich, 1991.Google Scholar
  64. Güting, R.H. Geo-relational algebra: A model and query language for geometric database systems. In: Schmidt, J.W., Ceri, S., and Missikoff, M., eds.,Proceedings of the International Conference on Extending Database Technology, Venice, 1988.Google Scholar
  65. Güting, R.H. Gral: An extensible relational database system for geometric applications.Proceedings of the Fifteenth International Conference on Very Large Data Bases, Amsterdam, 1989.Google Scholar
  66. Güting, R.H. Second-order signature: A tool for specifying data models, query processing, and optimization.Proceedings of the ACM SIGMOD Conference, Washington, DC, 1993.Google Scholar
  67. Güting, R.H. GraphDB: A data model and query language for graphs in databases. Fernuniversität Hagen, Informatik-Report 155, 1994 (submitted for publication). Short version entitled “GraphDB: Modeling and querying graphs in databases,”Proceedings of the Twentieth International Conference on Very Large Data Bases, Santiago, Chile, 1994.Google Scholar
  68. Güting, R.H. and Schilling, W. A practical divide-and-conquer algorithm for the rectangle intersection problem.Information Sciences 42:95–112, 1987.Google Scholar
  69. Güting, R.H. and Schneider, M. Realms: A foundation for spatial data types in database systems.Proceedings of the Third International Symposium on Large Spatial Databases, Singapore, 1993a.Google Scholar
  70. Güting, R.H. and Schneider, M. Realm-based spatial data types: The ROSE algebra. Fernuniversität Hagen, Report 141, 1993b.Google Scholar
  71. Güting, R.H., Zicari, R., and Choy, D.M. An algebra for structured office documents.ACM Transactions on Information Systems, 7:123–157, 1989.Google Scholar
  72. Gupta, A., Weymouth, T., and Jain, R. Semantic queries with pictures: The VIMSYS model.Proceedings of the Seventeenth International Conference on Very Large Data Bases, Barcelona, 1991.Google Scholar
  73. Guttmann, R.R-trees: A dynamic index structure for spatial searching.Proceedings of the ACM SIGMOD Conference, Boston, MA, 1984.Google Scholar
  74. Gyssens, M., Paredaens, J., and van Gucht, D. A. graph-oriented object database model.Proceedings of the ACM Conference on Principles of Database Systems, Nashville, TN, 1990.Google Scholar
  75. Haas, L.M. and Cody, W.F. Exploiting extensible DBMS in integrated geographic information systems.Proceedings of the Second International Symposium on Large Spatial Databases, Zürich, 1991.Google Scholar
  76. Haas, L.M., Freytag, J.C., Lohman, G.M., and Pirahesh, H. Extensible query processing in Starburst.Proceedings of the ACM SIGMOD, Portland, OR, 1989.Google Scholar
  77. Henrich, A., Six, H.-W., and Widmayer, P. TheLSD-tree: Spatial access to multidimensional point-and non-point-objects.Proceedings of the Fifteenth International Conference on Very Large Data Bases, Amsterdam, 1989.Google Scholar
  78. Herring, J., Larsen, R., and Shivakumar, J. Extensions to the SQL language to support spatial analysis in a topological data base.Proceedings of GIS/LIS San Antonio, TX, 1988.Google Scholar
  79. Hinrichs, K. The grid file system: Implementation and case studies of applications. Doctoral thesis, ETH Zürich, 1985.Google Scholar
  80. de Hoop, S. and van Oosterom, P. Storage and manipulation of topology in Postgres.Proceedings of the Third European Conference on Geographical Information Systems, München, 1992.Google Scholar
  81. Joseph, T. and Cardenas, A. PICQUERY: A high level query language for pictorial database management.IEEE Transactions on Software Engineering, 14:630–638, 1988.Google Scholar
  82. Keating, T., Phillips, W., and Ingram, K. An integrated topological database design for geographic information systems.Photogrammetric Engineering and Remote Sensing 53:1399–1402, 1987.Google Scholar
  83. Kriegel, H.P., Horn, H., and Schiwietz, M. The performance of object decomposition techniques for spatial query processing.Proceedings of the Second International Symposium on Large Spatial Database, Zürich, 1991.Google Scholar
  84. Larue, T., Pastre, D., and Viémont, Y. Strong integration of spatial domains and operators in a relational database system.Proceedings of the Third International Symposium on Large Spatial Databases, Singapore, 1993.Google Scholar
  85. Lin, K.I., The TV-tree: An index structure for high-dimensional data.VLDB Journal, 3(4): 519–544, 1994.Google Scholar
  86. Lipeck, U. and Neumann, K. Modelling and manipulating objects in geoscientific databases.Proceedings of the Fifth International Conference on the Entity-Relationship Approach, Dijon, France, 1987.Google Scholar
  87. Lo, M.L. and Ravishankar, C.V. Spatial joins using seeded trees.Proceedings of the ACM SIGMOD Conference, Minneapolis, MN, 1994.Google Scholar
  88. Lomet, D.B. and Salzberg, B. A robust multi-attribute search structure.Proceedings of the Fifth International Conference on Data Engineering, Los Angeles, 1989.Google Scholar
  89. Lu, W. and Han, J. Distance-associated join indices for spatial range search.Proceedings of the Ninth International Conference on Data Engineering, Vienna, 1992.Google Scholar
  90. Maingenaud, M. and Portier, M. Cigales: A graphical query language for geographical information systems.Proceedings of the Fourth International Symposium on Spatial Data Handling, Zürich, 1990.Google Scholar
  91. Mantey, P.E. and Carlson, E.D. Integrated geographic data bases: The GADS experience. In: Blaser, A., ed.,Data Base Techniques for Pictorial Applications. Berlin: Springer, 1980, pp. 173–198.Google Scholar
  92. Mehlhorn, K.Data Structures and Algorithms 3: Multidimensional Searching and Computational Geometry. Berlin: Springer, 1984.Google Scholar
  93. Meyer, B. Beyond icons: Towards new metaphors for visual query languages for spatial information systems. In: Cooper, R. ed.,Interfaces to Database Systems. Berlin: Springer, 1992.Google Scholar
  94. Morehouse, S. The architecture of ARC/INFO.Proceedings of the Auto-Carto 9, Baltimore, MD, 1989.Google Scholar
  95. Morton, G.M.A Computer Oriented Geodetic Data Base and a New Technique in File Sequencing. IBM Ltd., Ottawa, Canada, 1966.Google Scholar
  96. Nievergelt, J., Hinterberger, H., and Sevcik, K.C. The grid file: An adaptable, symmetric multikey file structure.ACM Transactions on Database Systems, 9:38–71, 1984.Google Scholar
  97. Nievergelt, J. and Preparata, F.P. Plane-sweep algorithms for intersecting geometric figures.Communications of the ACM, 25:739–747, 1982.Google Scholar
  98. Ooi, B.C., McDonell, K.J., and Sacks-Davis, R. Spatialkd-tree: An indexing mechanism for spatial databases.Proceeding of the IEEE COMPSAC Conference, Tokyo, 1987.Google Scholar
  99. Ooi, B.C., Sacks-Davis, R., and McDonell, K.J. Extending a DBMS for geographic applications.Proceedings of the Fifth International Conference on Data Engineering, Los Angeles, 1989.Google Scholar
  100. van Oosterom, P. and Vijlbrief, T. Building a GIS on top of the open DBMS POSTGRES.Proceedings of the Second European Conference on Geographical Information Systems, Brussels, 1991.Google Scholar
  101. Orenstein, J.A. Spatial query processing in an object-oriented database system.Proceedings of the ACM SIGMOD Conference, Washington, DC, 1986.Google Scholar
  102. Orenstein, J.A. Strategies for optimizing the use of redundancy in spatial databases.Proceedings of the First International Symposium on Large Spatial Databases, Santa Barbara, 1989.Google Scholar
  103. Orenstein, J.A. An algorithm for computing the overlay of k-dimensional spaces.Proceedings of the Second International Symposium on Large Spatial Databases, Zürich, 1991.Google Scholar
  104. Orenstein, J.A. and Manola, F. PROBE spatial data modeling and query processing in an image database application.IEEE Transactions on Software Engineering 14:611–629, 1988.Google Scholar
  105. Osborn, S.L. and Heaven, T.E. The design of a relational database system with abstract data types for domains.ACM Transactions on Database Systems, 11:357–373, 1986.Google Scholar
  106. Pagel, B.U., Six, H.W., and Toben, H. The transformation technique for spatial objects revisited.Proceedings of the Third International Symposium on Large Spatial Databases, Singapore, 1993.Google Scholar
  107. Papadias, D. and Sellis, T. Qualitative representation of spatial knowledge in twodimensional space.VLDB Journal, 3(4):479–517, 1994.Google Scholar
  108. Preparata, F.P. and Shamos, M.I.Computational Geometry: An Introduction. Berlin: Springer, 1985.Google Scholar
  109. Pullar, D. and Egenhofer, M. Towards formal definitions of topological relations among spatial objects.Proceedings of the Third International Symposium on Spatial Data Handling, Sydney, 1988.Google Scholar
  110. de Ridder, T. Die ROSE-Algebra: Implementierung geometrischer Datentypen und Operationen für erweiterbare Datenbanksysteme (The ROSE algebra: Implementation of geometric data types and operations for extensible database systems). Fernuniversität Hagen, Fachbereich Informatik, Diplomarbeit (Master's Thesis), 1994.Google Scholar
  111. Robinson, J.T. TheKDB-tree: A search structure for large multidimensional dynamic indexes.Proceedings of the ACM SIGMOD Conference, Ann Arbor, MI, 1981.Google Scholar
  112. Rosenthal, A., Heiler, S., Dayal, U., and Manola, F. Traversal recursion: A practical approach to supporting recursive applications.Proceedings of the ACM SIGMOD Conference, Washington, DC, 1986.Google Scholar
  113. Roussopoulos, N., Faloutsos, C., and Sellis, T. An efficient pictorial database system for PSQL.IEEE Transactions on Software Engineering, 14:639–650, 1988.Google Scholar
  114. Rotem, D. Spatial Join indices.Proceedings of the Seventh International Conference on Data Engineering, Kobe, Japan, 1991.Google Scholar
  115. Samet, H.The Design and Analysis of Spatial Data Structures. Reading, MA: Addison-Wesley, 1990.Google Scholar
  116. Schek, H.-J., Paul, H.B., Scholl, M.H., and Weikum, G. The DASDBS project: Objectives, experiences, and future prospects.IEEE Transactions on Knowledge and Data Engineering, 2:25–43, 1990.Google Scholar
  117. Schek, H.-J. and Wolf, A. From extensible databases to interoperability between multiple databases and GIS applications.Proceedings of the Third International Symposium on Large Spatial Databases, Singapore, 1993.Google Scholar
  118. Schilcher, M. Interactive graphic data processing in cartography.Computers & Graphics, 9:57–66, 1985.Google Scholar
  119. Scholl, M. and Voisard, A. Thematic map modeling.Proceedings of the First International Symposium on Large Spatial Databases, Santa Barbara, 1989.Google Scholar
  120. Scholl, M. and Voisard, A. Object-oriented database systems for geographic applications: An experiment with O2. In: Gambosi, G., Six, H., and Scholl, M., eds.,Proceedings of the International Workshop on Database Management Systems for Geographical Applications, Capri, 1991.Google Scholar
  121. Seeger, B. and Kriegel, H.P. Techniques for design and implementation of efficient spatial access methods.Proceedings of the Fourteenth International Conference on Very Large Data Bases, Los Angeles, 1988.Google Scholar
  122. Seeger, B. and Kriegel, H.P. The buddy-tree: An efficient and robust access method for spatial database systems.Proceedings of the Sixteenth International Conference on Very Large Data Bases, Brisbane, Australia, 1990.Google Scholar
  123. Sellis, T., Roussopoulos, N., and Faloutsos, C. TheR+-tree: A dynamic index for multi-dimensional objects.Proceedings of the Thirteenth International Conference on Very Large Data Bases, Brighton, 1987.Google Scholar
  124. Smith, T.R. and Gao, P. Experimental performance evaluations on spatial access methods.Proceedings of the Fourth International Symposium on Spatial Data Handling, Zürich, 1990.Google Scholar
  125. Smith, T.R., Menon, S., Star, J.L., and Estes, J.E. Requirements and principles for the implementation and construction of large-scale geographic information systems.International Journal of Geographical Information Systems, 1:13–31, 1987.Google Scholar
  126. Stonebraker, M., Frew, J., Gardels, K., and Meredith, J. The Sequoia 2000 storage benchmark.Proceedings of the ACM SIGMOD Conference, Washington, DC, 1993a.Google Scholar
  127. Stonebraker, M., Frew, J., and Dozier, J. The SEQUOIA 2000 project.Proceedings of the Third International Symposium on Large Spatial Databases, Singapore, 1993b.Google Scholar
  128. Stonebraker, M. and Rowe, L.A. The design of POSTGRES.Proceedings of the SIGMOD Conference, Washington, DC, 1986.Google Scholar
  129. Stonebraker, M., Rubenstein, B., and Guttmann, A. Application of abstract data types and abstract indices to CAD databases.Proceedings of the ACM Engineering Design Applications Conference, San Jose, CA, 1983.Google Scholar
  130. Svensson, P. and Huang, Z. Geo-SAL: A query language for spatial data analysis.Proceedings of the Second International Symposium on Large Spatial Databases, Zürich, 1991.Google Scholar
  131. Tamminen, M. The extendible cell method for closest point problems.BIT, 22:27–41, 1982.Google Scholar
  132. Tomlin, C.D.Geographic Information Systems and Cartographic Modeling. Englewood Cliffs, NJ: Prentice-Hall, 1990.Google Scholar
  133. Valduriez, P. Join indices.ACM Transactions on Database Systems, 12:218–246, 1987.Google Scholar
  134. Vijlbrief, T. and van Oosterom, P. The GEO++ system: An extensible GIS.Proceedings of the Fifth International Symposium on Spatial Data Handling, Charleston, SC, 1992.Google Scholar
  135. Voisard, A. Towards a toolbox for geographic user interfaces.Proceedings of the Second International Symposium on Large Spatial Databases, Zürich, 1991.Google Scholar
  136. Waugh, T.C. and Healey, R.G. The GEOVIEW design: A relational data base approach to geographical data handling.International Journal of Geographical Information Systems, 1:101–118, 1987.Google Scholar
  137. Widmayer, P. Datenstrukturen für Geodatenbanken (data structures for spatial databases). In: Vossen, G., ed.Entwicklungstendenzen bei Datenbanksystemen. München: Oldenbourg, 1991, pp. 317–361.Google Scholar
  138. Wilms, P.F., Schwarz, P.M., Schek, H.-J., and Haas, L.M. Incorporating data types in an extensible database architecture.Proceedings of the Third International Conference on Data and Knowledge Bases, Jerusalem, 1988.Google Scholar
  139. Wolf, A. The DASDBS Geo-kernel: Concepts, experiences, and the second step.Proceedings of the First International Symposium on Large Spatial Databases, Santa Barbara, 1989.Google Scholar
  140. Worboys, M.F. A generic model for planar geographical objects.International Journal of Geographical Information Systems, 6:353–372, 1992.Google Scholar

Copyright information

© VLDV 1994

Authors and Affiliations

  • Ralf Hartmut Güting
    • 1
  1. 1.Praktische Informatik IVFern Universität HagenHagenGermany

Personalised recommendations