Advertisement

Inventiones mathematicae

, Volume 116, Issue 1, pp 677–791 | Cite as

The unitary dual ofG2

  • David A. VoganJr.
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arthur, J.: On some problems suggested by the trace formula. In: Herb, R., Lipsman, R., Rosenberg, J. (eds.) Lie group representations II. (Lecture Notes in Mathematics, vol. 1041). Berlin Heidelberg New York: Springer, 1983, pp. 1–49Google Scholar
  2. 2.
    Barbasch, D., Vogan, D.: Unipotent representations of complex semisimple Lie groups. Ann. Math.121, 41–110 (1985)Google Scholar
  3. 3.
    Beilinson, A.: Localization of representations of reductive Lie algebras. In: Proceedings of the International Congress of Mathematicians, Warsaw 1983. Amsterdam London, 1984, pp. 699–710Google Scholar
  4. 4.
    Brylinski, R., Kostant, B.: Nilpotent orbits, normality, and Hamiltonian group actions (Preprint)Google Scholar
  5. 5.
    Duflo, M.: Représentations unitaires irréductibles des groupes semi-simples complexes de rang deux. Bull. Soc. Math. Fr.107, 55–96 (1979)Google Scholar
  6. 6.
    Enright, T.J., Wallach, N.R.: Notes on homological algebra and representations of Lie algebras. Duke Math. J.47, 1–15 (1980)Google Scholar
  7. 7.
    Gelfand, S.I.: Weil's representation of the Lie algebra of typeG 2, and representations ofSL 3 connected with it. Funct. Anal. Appl.14, 40–41 (1980)Google Scholar
  8. 8.
    Harish-Chandra: Harmonic analysis on reductive groups I. The theory of the constant term. J. Func. Anal.19, 104–204 (1975)Google Scholar
  9. 9.
    Huang, J.-S.: The unitary dual of the universal covering group ofGL(n 1ℝ). Duke Math. J.61, 705–745 (1990)Google Scholar
  10. 10.
    Jantzen, J.C.: Moduln mit einem Höchsten Gewicht. (Lecture Notes in Mathematics, vol. 750). Berlin Heidelberg New York: Springer, 1979Google Scholar
  11. 11.
    Joseph, A.: The minimal orbit in a simple Lie algebra and its associated maximal ideal. Ann. Sci. Ecole Norm. Sup. (4)9, 1–30 (1976)Google Scholar
  12. 12.
    Knapp, A.: Representation theory of real semisimple groups: an overview based on examples. Princeton University Press, Princeton, New Jersey, 1986Google Scholar
  13. 13.
    Knapp, A., Stein, E.: Intertwining operators for semisimple groups II. Invent. Math.60, 9–84 (1980)Google Scholar
  14. 14.
    Knapp, A.: Lie group, Lie algebras, and cohomology. (Mathematical Notes, vol. 34. Princeton University Press. Princeton, New Jersey, 1988Google Scholar
  15. 15.
    Kostant, B.: The principle of triality and a distinguished unitary representation ofSO(4,4). 65–109 in: Differential Geometrical Methods in Theoretical Physics (K. Bleuler and M. Werner, eds.). Kluwer Academic Publishers, Dordrecht-Boston, 1988Google Scholar
  16. 16.
    Langlands, R.P.: On the classification of representations of real algebraic group. In: Representation theory and harmonic analysis on semisimple Lie groups. (Mathematical Surveys and Monographs, vol. 31). American Mathematical Society, Providence, Rhode Island 1989, pp. 101–170Google Scholar
  17. 17.
    Levasseur, T., Smith, S.P.: Primitive ideals and nilpotent orbits in typeG 2. J. Algebra114, 81–105 (1988)Google Scholar
  18. 18.
    Pukanszky, L.: The Plancherel formula for the universal covering group ofSL(2, ℝ). Math. Ann.156 (1964) 96–143Google Scholar
  19. 19.
    Speh, B., Vogan, D.: Reducibility of generalized principal series representations. Acta Math.145, 227–299 (1980)Google Scholar
  20. 20.
    Vogan, D.: Gelfand-Kirillov dimension for Harish-Chandra modules. Invent. Math.48, 75–98 (1978)Google Scholar
  21. 21.
    Vogan, D.: The algebraic structure of the representations of semisimple Lie groups I. Ann. Math.109, 1–60 (1979)Google Scholar
  22. 22.
    Vogan, D.: Irreducible characters of semisimple Lie groups I. Duke Math. J.46, 61–108 (1979)Google Scholar
  23. 23.
    Vogan, D.: Representations of Real Reductive Lie Groups. Boston Basel Stuttgart: Birkhäuser, 1981Google Scholar
  24. 24.
    Vogan, D.: Singular unitary representations. In: Carmona, J., Vergne, M. (eds.) Non-commutative harmonic analysis and Lie groups. (Lecture Notes in Mathematics, vol. 880). Berlin Heidelberg New York: Springer, 1981, pp. 506–535Google Scholar
  25. 25.
    Vogan, D.: Understanding the unitary dual. In: Herb, R., Lipsman, R., Rosenberg, J. (eds.) Lie Group Representations I. (Lecture Notes in Mathematics, vol. 1024). Berlin Heidelberg New York: Springer 1983, pp. 264–286Google Scholar
  26. 26.
    Vogan, D.: Irreducible characters of semisimple Lie groups III. Proof of the Kazhdan-Lusztig conjectures in the integral case. Invent. Math.71, 381–417 (1983)Google Scholar
  27. 27.
    Vogan, D.: Unitarizability of certain series of representations. Ann. Math.120, 141–187 (1984)Google Scholar
  28. 28.
    Vogan, D.: The unitary dual ofGL(n) over an archimedean field. Invent. Math.83, 449–505 (1986)Google Scholar
  29. 29.
    Vogan, D.: Unitary representations of reductive Lie groups. (Annals of Mathematics Studies, vol. 118). Princeton, New Jersey: Princeton University Press, 1987Google Scholar
  30. 30.
    Vogan, D.: Associated varieties and unipotent representations. In: Barker, W., Sally, P. (eds.) Harmonic analysis on reductive groups. Boston Basel Berlin: Birkhäuser, 1991Google Scholar
  31. 31.
    Vogan, D.: Unipotent representations and cohomological induction (Preprint)Google Scholar
  32. 32.
    Vogan, D. and G. Zuckerman: Unitary representations with non-zero cohomology. Compositio Math.53, 51–90 (1984)Google Scholar
  33. 33.
    Wong, H.: Dolbeault cohomologies and Zuckerman modules associated with finite rank representations. Ph.D. dissertation, Harvard University, 1991Google Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • David A. VoganJr.
    • 1
  1. 1.Department of MathematicsMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations