Inventiones mathematicae

, Volume 116, Issue 1, pp 513–530 | Cite as

Sur la semi-simplicité des produits tensoriels de représentations de groupes

  • Jean-Pierre Serre
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographie

  1. 1.
    Borel, A., Tits, J.: Groupes réductifs. Publ. Math. I.H.E.S.27, 55–150 (1965) (=Borel, A.: Oe. 66)Google Scholar
  2. 2.
    Bourbaki, N.: Groupes et Algèbres de Lie. Chap. 4–5–6, Paris: Masson et CCLS 1981Google Scholar
  3. 3.
    Chevalley, C.: Théorie des groupes de Lie, tome III, Paris: Hermann 1954Google Scholar
  4. 4.
    Curtis, C.W., Reiner, I.: Methods of Representation Theory, Vol. I, New York: John Wiley and Sons 1981Google Scholar
  5. 5.
    Demazure, M., Gabriel, P.: Groupes algébriques. Paris et Amsterdam: Masson et North-Holland 1970Google Scholar
  6. 6.
    Jantzen, J.C.: Representations of Algebraic Groups. Orlando: Academic Press, Pure and Applied Mathematics (vol. 131) 1987Google Scholar
  7. 7.
    Jantzen, J.C.: Low dimensional representations of reductive groups are semisimple. University of Oregon, Eugene 1993Google Scholar
  8. 8.
    Matthews, C.R., Vaserstein, L.N., Weisfeiler, B.: Congruence properties of Zariski-dense subgroups I. Proc. London Math. Soc.48, 514–532 (1984)Google Scholar
  9. 9.
    Nori, M.V.: On subgroups ofGL n(F q). Invent. Math.88, 257–275 (1987)Google Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • Jean-Pierre Serre
    • 1
  1. 1.Collège de FranceParisFrance

Personalised recommendations