Inventiones mathematicae

, Volume 116, Issue 1, pp 393–408 | Cite as

Unrefined minimal K-types forp-adic groups

  • Allen Moy
  • Gopal Prasad
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Borel, A.: Linear Algebraic Groups. Grad. Text Math. vol. 126, New York: Springer, 1991Google Scholar
  2. 2.
    Borel, A., Tits, J.: Groupes réductifs. Publ. Math. I. H. E. S.27, 55–150 (1965)Google Scholar
  3. 3.
    Bruhat, F., Tits, J.: Groupes réductifs sur un corps local I. Publ. Math. I. H. E. S.41 (1972)Google Scholar
  4. 4.
    Bruhat, F., Tits, J.: Groupes réductifs sur un corps local II. Publ. Math. I. H. E. S.60 (1984)Google Scholar
  5. 5.
    Bushnell, C.: Hereditary orders. Gauss sums and supercuspidal representations of GLn. J. Reine Angew. Math.375–376, 184–210 (1987)Google Scholar
  6. 6.
    Demazure, M., Gabriel, P.: Groupes Algébriques, Tome I. Amsterdam: North Holland, 1970Google Scholar
  7. 7.
    Harish-Chandra, Collected Papers, New York: Springer Verlag, 1984Google Scholar
  8. 8.
    Howe, R.: Some qualitative results on the representation theory of GLn over a p-adic field. Pac. J. Math.73, 479–538 (1977)Google Scholar
  9. 9.
    Howe, R., Moy, A.: Minimal K-types for GLn over a p-adic field. Astérisque171–172, 257–271 (1989)Google Scholar
  10. 10.
    Kempf, G.: Instability in invariant theory. Ann. Math.108, 299–316 (1978)Google Scholar
  11. 11.
    Morris, L.: Fundamental G-strata for classical groups. Duke Math. J.64, 501–553 (1991)Google Scholar
  12. 12.
    Moy, A.: A conjecture on minimal K-types for GLn over a p-adic field. Representation Theory and Number Theory in Connection with the Local Langlands Conjecture. Proceedings of a Conference held December 8–14, 1985. Contemp. Math.86, 249–254 (1989)Google Scholar
  13. 13.
    Murty, K. G.: Linear Programming. New York: John Wiley, 1983Google Scholar
  14. 14.
    Prasad, G., Raghunathan, M. S.: Topological central extensions of semi-simple groups over local fields. Ann. Math.119, 143–268 (1984)Google Scholar
  15. 15.
    Tits, J.: Reductive groups over Local Fields. Proceedings of A. M. S. Symposia in Pure Math.33 (Part 1), 29–69 (1979)Google Scholar
  16. 16.
    Vogan, D.: The algebraic structure of the representations of semisimple Lie groups. Ann. Math.109, 1–60 (1979)Google Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • Allen Moy
    • 1
  • Gopal Prasad
    • 1
  1. 1.Department of MathematicsUniversity of MichiganAnn ArborUSA

Personalised recommendations