Inventiones mathematicae

, Volume 118, Issue 1, pp 255–283 | Cite as

Bundles and finite foliations

  • D. Cooper
  • D. D. Long
  • A. W. Reid


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F. Bonahon: Bouts des variétés hyperboliques de dimension 3. Ann. Math.124 (1986) 71–158Google Scholar
  2. 2.
    J. Cannon, W.P. Thurston, Group Invariant Peano Curves (preprint)Google Scholar
  3. 3.
    A.J. Casson, S.A. Bleiler: Automorphisms of Surfaces after Nielsen and Thurston. C.U.P. (1988)Google Scholar
  4. 4.
    M. Culler, P.B. Shalen: Varieties of group representations and splittings of 3-manifolds. Ann. Math.117 (1983) 109–146Google Scholar
  5. 5.
    S. Fenley: Depth one foliations in hyperbolic 3-manifolds. Ph.D. Dissertation, Princeton, 1989Google Scholar
  6. 6.
    D. Fried: Fibrations over S1 with pseudo-Anosov monodromy. Exposé 14 in Travaux de Thurston sur les surfaces, Astérisque,66–67 (1979)Google Scholar
  7. 7.
    A. Hatcher, W. Thurston, Incompressible sufaces in 2-bridge knot complements. Invent. Math.79 (1985) 225–246Google Scholar
  8. 8.
    W. Heil: Normalizers of incompressible surfaces in 3-manifolds. Glasnik Matematički.16 (1981) 145–150Google Scholar
  9. 9.
    D.D. Long. Constructing pseudo-Anosov maps. In: Knots and manifolds. D. Rolfsen (eds) Lecture Notes No. 1144, Berlin Heidelberg New York: Springer (1981) pp. 108–144Google Scholar
  10. 10.
    A. Marden: The geometry of finitely generated Kleinian groups. Ann. Math.99 (1974) 383–461Google Scholar
  11. 11.
    L. Mosher: Surfaces and branched surfaces transverse to pseudo-Anosov flows on 3-manifolds. J. Differ. Geom.34 (1991) 1–36Google Scholar
  12. 12.
    L. Moser: Examples of quasi-geodesic flows on hyperbolic 3-manifolds. Topology 90, Ohio State university Math Research Inst. Pub. 1, pp. 227–241Google Scholar
  13. 13.
    G.P. Scott: The geometries of 3-manifolds. Bull. L.M.S.15 (1983) 401–487Google Scholar
  14. 14.
    W.P. Thurston: The Geometry and Topology of 3-manifolds. Princeton University mimeo-graphed notes (1979)Google Scholar
  15. 15.
    W.P. Thurston: Hyperbolic structures on 3-manifolds II: Surface groups and 3-manifolds which fiber over the circle (Preprint.)Google Scholar
  16. 16.
    W.P. Thurston: A norm for the homology of 3-manifolds. Memoirs of the A.M.S., vol 339, pp. 100–130Google Scholar
  17. 17.
    W.P. Thurston: Three dimensional manifolds, Kleinian groups and hyperbolic geometry. Bull. A.M.S.6 (1982) 357–381Google Scholar
  18. 18.
    F. Waldhausen: On irreducible three-manifolds which are sufficiently large. Ann. Math.87 (1968) 56–68Google Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • D. Cooper
    • 1
  • D. D. Long
    • 1
  • A. W. Reid
    • 2
  1. 1.Department of MathematicsUniversity of CaliforniaSanta BarbaraUSA
  2. 2.Department of Pure MathematicsUniversity of CambridgeCambridgeUK

Personalised recommendations