Advertisement

Inventiones mathematicae

, Volume 118, Issue 1, pp 109–132 | Cite as

Strong rigidity of positive quaternion-Kähler manifolds

  • Claude LeBrun
  • Simon Salamon
Article

Keywords

Manifold Strong Rigidity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alekseevskii, D.V.: Compact quaternion spaces. Functional Anal. Appl.2, 106–114 (1968)Google Scholar
  2. 2.
    Alekseevskii, D.V.: Classification of quaternionic spaces with transitive solvable group of motions. Math. USSR-Izv.9, 297–339 (1975)Google Scholar
  3. 3.
    Atiyah, M.F., Singer, I.M.: The index theory of elliptic operators III. Ann. Math.87, 546–604 (1968)Google Scholar
  4. 4.
    Bailey, T.N., Eastwood, M.G.: Complex paraconformal manifolds—their differential geometry and twistor theory. Forum Math.3, 61–103 (1991)Google Scholar
  5. 5.
    Bando, S., Mabuchi, T.: Uniqueness of Kähler-Einstein metrics modulo connected group actions, in Algebraic Geometry, Sendai, 1985 (Advanced Studies in Pure Math. 10), T. Oda (ed.) North Holland, 1987Google Scholar
  6. 6.
    Barker, R., Salamon, S.M.: Analysis on a generalized Heisenberg group. J. London Math. Soc.28, 184–192 (1983)Google Scholar
  7. 7.
    Battaglia, F.:S 1 quotients of quaternion-Kähler manifolds (preprint)Google Scholar
  8. 8.
    Bérard Bergery, L.: Variétés quaternioniennes, unpublished lecture notes, Espalion, 1979Google Scholar
  9. 9.
    Berger, M.: Sur les groupes d'holonomie des variétés à connexion affine et des variétés riemanniennes. Bull. Soc. Math. France83, 279–330 (1955)Google Scholar
  10. 10.
    Besse, A.: Einstein Manifolds. Berlin Heidelberg New York: Springer 1987Google Scholar
  11. 11.
    Bonan, E.: Sur l'algèbra extérieure d'une variété presque hermitienne quaternionique. C.R. Acad. Sci. Paris295, 115–118 (1982)Google Scholar
  12. 12.
    Bott, R.: Non-degenerate critical manifolds. Ann. Math.60, 248–261 (1954)Google Scholar
  13. 13.
    Campana, F.: Une version géométrìque généralisée du théorème de produit de Nadel. C.R. Acad. Sci. Paris312, 853–856 (1991)Google Scholar
  14. 14.
    de Wit, B., van Proetyen, A.: Special geometry, cubic polynomials and homogeneous space. Commun. Math. Phys.149, 307–333 (1992)Google Scholar
  15. 15.
    Fujiki, A.: On the de Rham cohomology group of a compact Kähler symplectic manifold, in Algebraic Geometry, Sendai, 1985 (Advanced Studies in Pure Math. 10), T. Oda (ed.) North Holland, 1987Google Scholar
  16. 16.
    Galicki, K.: Multi-centre metrics with negative cosmological constant. Class. Quantum Grav.,8, 1259–1543 (1991)Google Scholar
  17. 17.
    Galicki, K., Lawson, H.B.: Quaternionic reduction and quaternionic orbifolds. Math. Ann.282, 1–21 (1988)Google Scholar
  18. 18.
    Greub, W., Halperin, S. Vanstone, R.: Curvature, Connections and Characteristic Classes, Volume 3, New York, Academic Press, 1976Google Scholar
  19. 19.
    Hartshorne, R.: Algebraic Geometry. Berlin Heidelberg New York: Springer 1977Google Scholar
  20. 20.
    Hitchin, N.J.: Kählerian twistor spaces, Proc. Lond. Math. Soc.43, 133–150 (1981)Google Scholar
  21. 21.
    Hirzebruch, F.: Topological Methods in Algebraic Geometry, 3rd edition. Berlin Heidelberg New York: Springer 1966Google Scholar
  22. 22.
    Hirzebruch, F. Sladowy, P.: Elliptic genera, involutions, and homogeneous spin manifolds. Geom. Dedicata35, 309–343 (1990)Google Scholar
  23. 23.
    Kobak, P.Z., Swann, A.: Quaternionic geometry of a nilpotent variety. Math. Ann.197, 747–764 (1993)Google Scholar
  24. 24.
    S. Kobayashi: Principal fiber bundles with 1-dimensional toroidal group. Tôhoku Math. J.8, 29–45 (1956)Google Scholar
  25. 25.
    Kobayashi, S., Ochiai, T.: Characterization of complex projective spaces and hyperquadrics. J. Math. Kyoto Univ.13, 31–47 (1973)Google Scholar
  26. 26.
    Kollár, J., Matsusaka, T.: Riemann-Roch type inequalities. Am. J. Math105, 229–252 (1983)Google Scholar
  27. 27.
    Kollár, J., Miyaoka, Y., Mori, S.: Rational connectedness and boundedness of Fano manifolds. J. Differ. Geom.36, 765–779 (1992)Google Scholar
  28. 28.
    Kraines, V.: Topology of quaternionic manifolds, Trans. Am. Math. Soc.122, 357–367 (1966)Google Scholar
  29. 29.
    LeBrun, C.R.: A rigidity theorem for quaternionic-Kähler manifolds. Proc. Am. Math. Soc.103, 1205–1208 (1988)Google Scholar
  30. 30.
    LeBrun, C.R.: Quaternionic-Kähler manifolds and conformal geometry. Math. Ann.284, 353–376 (1989)Google Scholar
  31. 31.
    LeBrun, C.R.: On complete quaternionic-Kähler manifolds. Duke Math. J.63, 723–743 (1991)Google Scholar
  32. 32.
    LeBrun, C.R.: On the topology of quaternionic manifolds. Twistor Newsletter32, 6–7 (1991)Google Scholar
  33. 33.
    Lichnerowicz, A.: Isométries et transformations analytiques d'une variété kählérienne compacte. Bull. Soc. Math. France87, 427–437 (1959)Google Scholar
  34. 34.
    Marchiafava, S., Romani, G.: Sui fibrati con struttura quaternionale generalizzata. Ann. Mat. Pura Appl.107, 131–157 (1976)Google Scholar
  35. 35.
    Matsusaka, T.: Polarized varieties with a given Hilbert polynomial. Am. J. Math94, 1027–1077 (1972)Google Scholar
  36. 36.
    Mori, S.: Hartshorne conjecture and extremal ray. Sugaku Expositions0, 15–37 (1988)Google Scholar
  37. 37.
    Nadel, A.: The boundedness of degree of fano varieties with Picard number one. J. Am. Math. Soc.4, 681–692 (1991)Google Scholar
  38. 38.
    Nagano, T. Takeuchi, M.: Signature of quaternionic Kaehler manifolds. Proc. Jpn Acad.59, 384–386 (1983)Google Scholar
  39. 39.
    Poon, Y.S., Salamon, S.M.: Eight-dimensional quaternionic Kähler manifolds with positive scalar curvature. J. Differ. Geom.33, 363–378 (1991)Google Scholar
  40. 40.
    Salamon, S.: Quaternionic Kähler manifolds. Invent. Math.67, 143–171 (1982)Google Scholar
  41. 41.
    Salamon, S.: Riemannian Geometry and Holonomy Groups. Pitman Research Notes in Mathematics 201, Longman Scientific, 1989Google Scholar
  42. 42.
    Salamon, S.M.: On the cohomology of Kähler and hyper-Kähler manifolds (preprint)Google Scholar
  43. 43.
    Swann, A.F.: Hyperkähler and quaternionic Kähler geometry. Math. Ann.289, 421–450 (1991)Google Scholar
  44. 44.
    Wang, M.Y.: Parallel spinors and parallel forms. Anal. Global Anal. Geom.7, 59–68 (1989)Google Scholar
  45. 45.
    Wiśniewski, J.A.: On Fano manifolds of large index. Manus. Math.70, 145–152 (1991)Google Scholar
  46. 46.
    Witten, E.: The index of the Dirac operator in loop space, in Elliptic Curves and Modular Forms in: Algebraic Topology, P.S. Landweber (ed.), Lect. Notes Math. 1326, 161–181 (1988)Google Scholar
  47. 47.
    Wolf, J.A.: Complex homogeneous contact structures and quaternionic symmetric spaces. J. Math. Mech.14 1033–1047 (1965)Google Scholar
  48. 48.
    Yau, S.T.: On the Ricci-curvature of a complex Kähler manifold and the complex Monge-Ampère equations. Comment. Pure Appl. Math.31, 339–411 (1978)Google Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • Claude LeBrun
    • 1
  • Simon Salamon
    • 2
  1. 1.Department of MathematicsS.U.N.Y.Stony BrookUSA
  2. 2.Mathematical InstituteOxfordUK

Personalised recommendations