Inventiones mathematicae

, Volume 101, Issue 1, pp 583–591 | Cite as

Hall algebras and quantum groups

  • Claus Michael Ringel
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [D] Drinfeld, V.G.: Quantum groups. In: Proc. Int. Congr. Math. Berkeley 1986. Am. Math. Soc., 1987, pp. 798–820Google Scholar
  2. [DR] Dlab, V., Ringel, C.M.: On algebras of finite representation type. J. Algebra33, 306–394 (1975)Google Scholar
  3. [M] Macdonald, I.G.: Symmetric functions and Hall polynomials. Clarendon Press: Oxford, 1979Google Scholar
  4. [R1] Ringel, C.M.: Hall algebras. In: Topics in Algebra. Banach Centre Publ. 26. Warszawa (To appear)Google Scholar
  5. [R2] Ringel, C.M.: Hall polynomials for the representation-finite hereditary algebras. Adv. Math. (To appear)Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • Claus Michael Ringel
    • 1
  1. 1.Fakultät für MathematikUniversität BielefeldBielefeld 1Germany

Personalised recommendations