Inventiones mathematicae

, Volume 101, Issue 1, pp 583–591 | Cite as

Hall algebras and quantum groups

  • Claus Michael Ringel


Quantum Group Hall Algebra 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [D] Drinfeld, V.G.: Quantum groups. In: Proc. Int. Congr. Math. Berkeley 1986. Am. Math. Soc., 1987, pp. 798–820Google Scholar
  2. [DR] Dlab, V., Ringel, C.M.: On algebras of finite representation type. J. Algebra33, 306–394 (1975)Google Scholar
  3. [M] Macdonald, I.G.: Symmetric functions and Hall polynomials. Clarendon Press: Oxford, 1979Google Scholar
  4. [R1] Ringel, C.M.: Hall algebras. In: Topics in Algebra. Banach Centre Publ. 26. Warszawa (To appear)Google Scholar
  5. [R2] Ringel, C.M.: Hall polynomials for the representation-finite hereditary algebras. Adv. Math. (To appear)Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • Claus Michael Ringel
    • 1
  1. 1.Fakultät für MathematikUniversität BielefeldBielefeld 1Germany

Personalised recommendations