Inventiones mathematicae

, Volume 101, Issue 1, pp 237–260

Damping oscillatory integrals

  • Michael Cowling
  • Shaun Disney
  • Giancarlo Mauceri
  • Detlef Müller
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bruna, J., Nagel, A., Wainger, S.: Convex hypersurfaces and Fourier transforms. Ann. Math.127, 333–365 (1988)Google Scholar
  2. 2.
    Cowling, M., Disney, S.: On oscillatory integrals. In: Cowling, M., Meaney, C., Moran, W. (eds.) Miniconference on Harmonic Analysis (Canberra, 17–20 June 1987). (Proceedings of the Centre for Mathematical Analysis, Australian National University, vol. 15, pp. 45–54 Canberra: Centre for Mathematical Analysis 1987Google Scholar
  3. 3.
    Cowling, M., Mauceri, G.: Oscillatory integrals and Fourier transforms of surface carried measures. Trans. Am. Math. Soc.304, 53–68 (1987)Google Scholar
  4. 4.
    Herz, C.S.: Fourier transforms related to convex sets. Ann. Math.75, 81–92 (1962)Google Scholar
  5. 5.
    Hlawka, E.: Über Integrale auf konvexen Körper. I., Monatsh. Math.54, 1–36 (1950)Google Scholar
  6. 6.
    Hörmander, L.: The Analysis of Linear Partial Differential Operators, Volume I. Berlin Heidelberg New York: Springer 1983Google Scholar
  7. 7.
    Jeanquartier, P.: Développement asymptotique de la distribution de Dirac. C.R. Acad. Sci. Paris271, 1159–1161 (1970)Google Scholar
  8. 8.
    John, F.: Extremum problems with inequalities as subsidiary conditions. In: Friedrichs, K. O., Neugebauer, O.E., Stoker, J.J. (eds.) Studies and Essays Presented to Richard Courant on his Sixtieth Birthday. January 8, 1948 (pp. 187–204) New York: Interscience 1948Google Scholar
  9. 9.
    Leichtweiß, K.: Über die affine Exzentrizität konvexer Körper. Arch. Math.10, 187–199 (1959)Google Scholar
  10. 10.
    Littman, W.: Fourier transforms of surface carried measures and differentiability of surface averages. Bull. Am. Math. Soc.69, 766–770 (1963)Google Scholar
  11. 11.
    Malgrange, B.: Intégrales asymptotiques et monodromies. Ann. Sci. Ec. Norm. Super.7, 405–430 (1974)Google Scholar
  12. 12.
    Randol, B.: On the asymptotic behaviour of the Fourier transform of the indicator function of a convex set. Trans. Am. Math. Soc.139, 279–285 (1969)Google Scholar
  13. 13.
    Sogge, C.D., Stein, E.M.: Averages of functions over hypersurfaces inR n Invent. Math.82, 543–556 (1985)Google Scholar
  14. 14.
    Stein, E.M.: Oscillatory integrals in Fourier analysis. In: Stein, E.M. (eds.) Beijing Lectures in Harmonic Analysis. (Ann. Math. Stud112, pp. 307–355) Princeton, N.J.: Princeton University 1986Google Scholar
  15. 15.
    Svensson, I.: Estimates for the Fourier transform of the characteristic function of a convex set. Ark. Mat.9, 11–22 (1971)Google Scholar
  16. 16.
    Varĉenko, A.N.: Newton polyhedra and estimation of oscillating integrals. Funct. Anal. Appl.10, 175–196 (1976)Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • Michael Cowling
    • 1
  • Shaun Disney
    • 1
  • Giancarlo Mauceri
    • 2
  • Detlef Müller
    • 3
  1. 1.School of MathematicsUniversity of New South WalesKensingtonAustralia
  2. 2.Dipartimento di MatematicaUniversità di GenovaGenovaItalia
  3. 3.Fakultät für MathematikUniversität BielefeldBielefeld 1Bundesrepublik Deutschland

Personalised recommendations