Inventiones mathematicae

, Volume 122, Issue 1, pp 421–451 | Cite as

Breaking classical convexity in Waring's problem: Sums of cubes and quasi-diagonal behaviour

  • Trevor D. Wooley
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Bombieri: On Vinogradov's mean value theorem and Weyl sums. Proceedings of the conference on automorphic forms and analytic number theory (Montreal, PQ, 1989), Univ. Montréal, Montreal, PQ, pp. 7–24, 1990Google Scholar
  2. 2.
    J. Brüdern: On Waring's problem for cubes. Math. Proc. Camb. Phil. Soc.109, 229–256 (1991)Google Scholar
  3. 3.
    H. Davenport: Sur les sommes de puissances entières. C. R. Acad. Sci.207, 1366–1368 (1938)Google Scholar
  4. 4.
    H. Davenport: On Waring's problem for cubes. Acta Math.71, 123–143 (1939)Google Scholar
  5. 5.
    H. Davenport: Sums of three positive cubes. J. London Math. Soc.25, 339–343 (1950)Google Scholar
  6. 6.
    G.H. Hardy, J.E. Littlewood: Some problems of Partitio Numerorum, VI: Further researches in Waring's problem. Math. Z.23, 1–37 (1925)Google Scholar
  7. 7.
    C. Hooley: On Waring's problem. Acta. Math.157, 49–97 (1986)Google Scholar
  8. 8.
    R.A. Hunt: On the convergence of Fourier series, Proceedings of the conference on orthogonal expansions and their continuous analogues (Edwardsville, Ill 1967), Southern Illinois Univ. Press, Carbondale, Ill., pp. 235–255, 1968Google Scholar
  9. 9.
    C.J. Ringrose: Sums of three cubes. J. London Math. Soc. (2)33, 407–413 (1986)Google Scholar
  10. 10.
    R.C. Vaughan: The Hardy-Littlewood Method. University Press, Cambridge, 1981Google Scholar
  11. 11.
    R.C. Vaughan: Sums of three positive cubes. Bull. London Math. Soc.17, 17–20 (1985)Google Scholar
  12. 12.
    R.C. Vaughan: On Waring's problem for cubes. J. Reine Angew. Math.365, 122–170 (1986)Google Scholar
  13. 13.
    R.C. Vaughan: A new iterative method in Waring's problem. Acta Math.162, 1–71 (1989)Google Scholar
  14. 14.
    R.C. Vaughan: On Waring's problem for cubes, Il. J. London Math. Soc. (2)39, 205–218 (1989)Google Scholar
  15. 15.
    R.C. Vaughan: A new iterative method in Waring's problem, Il. J. London Math. Soc. (2)39, 219–230 (1989)Google Scholar
  16. 16.
    R.C. Vaughan, T.D. Wooley: Further improvements in Waring's problem. Acta Math.174, 147–240 (1995)Google Scholar
  17. 17.
    R.C. Vaughan, T.D. Wooley: Further improvements in Waring's problem, Il: Sixth powers. Duke Math. J.76, 683–710 (1994)Google Scholar
  18. 18.
    T.D. Wooley: Large improvements in Waring's problem. Ann. Math.135, 131–164 (1992)Google Scholar
  19. 19.
    T.D. Wooley: Quasi-diagonal behaviour in certain mean value theorems of additive number theory, J. Am. Math. Soc.7, 221–245 (1994)Google Scholar
  20. 20.
    A. Zygmund: Trigonometric series. vol. 2, Cambridge University Press, 1968Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • Trevor D. Wooley
    • 1
  1. 1.Mathematics DepartmentUniversity of MichiganAnn ArborUSA

Personalised recommendations