Inventiones mathematicae

, Volume 122, Issue 1, pp 195–229 | Cite as

Galois cohomology of the classical groups over fields of cohomological dimension≦2

  • E. Bayer-Fluckiger
  • R. Parimala
Article

Keywords

Classical Group Cohomological Dimension Galois Cohomology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. 1.
    Amitsur, S.A.: Generic splitting fields of central simple algebras. Ann. of Math.62, 8–43 (1955)Google Scholar
  2. 2.
    Arason, J.: Cohomologische Invarianten quadratischer Formen, J. Algebra36, 448–491 (1975)Google Scholar
  3. 3.
    Arason, J.: Wittring und Galoiscohomologie bei Charakteristik 2, J. reine angew. Math.307–308, 247–256 (1979)Google Scholar
  4. 4.
    Arason, J.: A proof of Merkurjev's theorem, in Quadratic and Hermitian Forms, CMS Conference Proceedings4 (eds: 1. Hambleton, C. Riehm), 121–130 (1984)Google Scholar
  5. 5.
    Arf, C.: Untersuchungen über quadratische Formen in Körpern der Characteristik 2 (Teil I), J. reine angew. Math.183, 148–167 (1941)Google Scholar
  6. 6.
    Bartels, H.-J.: Invarianten hermitescher Formen über Schiefkörpern, Math. Ann.215, 269–288 (1975)Google Scholar
  7. 7.
    Bayer-Fluckiger, E., Lenstra, H.W., Jr.: Forms in odd degree extensions and self-dual normal bases, Amer. J. Math.112, 359–373 (1990).Google Scholar
  8. 8.
    Bruhat, F., Tits, J.: Schémas en groupes et immeubles des groupes classiques sur un corps local. Deuxième partie: Groupes unitaires. Bull. Soc. math. France,115, 141–195 (1987).Google Scholar
  9. 9.
    Jacobson, N.: Clifford algebras for algebras with involution of typeD, J. Algebra1, 288–300 (1964) (=Coll. Math. Papers, vol. 2, 516–528.)Google Scholar
  10. 10.
    Jacobson, N.: Structure and Representations of Jordan Algebras, A.M.S. Colloquium Publ. XXXIX, Providence (1968).Google Scholar
  11. 11.
    Kneser, M.: On Galois Cohomology of Classical Groups, Tata Lecture Notes47 (1969).Google Scholar
  12. 12.
    Knus, M.: Quadratic and Hermitian Forms over Rings, Grundlehren Math. Wiss.294, Springer-Verlag, Berlin (1991).Google Scholar
  13. 13.
    Knus, M., Merkurjev, A., Rost, M., Tignol, J.-P.: book in preparation.Google Scholar
  14. 14.
    Merkurjev, A.: On the norm residue symbol of degree 2, Dokladi Akad. Nauk. SSSR261 (1981), 542–547, English translation:Soviet Math. Dokladi 24, 546–551 (1981).Google Scholar
  15. 15.
    Merkurjev, A.: Norm principle for algebraic groups, Algebra Analysis, to appear.Google Scholar
  16. 16.
    Merkurjev, A., Suslin, A.: On the norm residue homomorphism of degree three, Izvestiya Akad. Nauk. SSSR54 (1990), English translation: Math. USSR Izvestiya36 (1991), 349–367 (1991).Google Scholar
  17. 17.
    Platonov, V., Rapinchuk, A.: Algebraic Groups and Number Theory, Academic Press (1994).Google Scholar
  18. 18.
    Scharlau, W.: Quadratic and Hermitian Forms, Grundlehren Math. Wiss.270, Springer-Verlag, Berlin (1985).Google Scholar
  19. 19.
    Serre, J-P.: Corps locaux, Hermann, Paris (1962).Google Scholar
  20. 20.
    Serre, J-P.: Cohomologie Galoisienne, Lecture Notes in Mathematics5, Springer-Verlag (1964 and 1994).Google Scholar
  21. 21.
    Serre, J-P.: Cohomologie galoisienne: progrès et problèmes, Séminaire Bourbaki, exposén o783, 1993/94.Google Scholar
  22. 22.
    Suslin, A.: Algebraic K-theory and norm residue homomorphism, Journal of Soviet mathematics,30, 2556–2611 (1985).Google Scholar
  23. 23.
    Tits, J.: Formes quadratiques, groupes orthogonaux et algèbres de Clifford, Invent. Math.5 (1968), 19–41 (1968).Google Scholar
  24. 24.
    Tits, J.: Representations linéaires irréductibles d'un groupe réductif sur un corps quelconque. J. reine angew. Math.247 (1971), 196–220 (1971).Google Scholar
  25. 25.
    Wadsworth, A.: Merkurjev's elementary proof of Merkurjev's theorem, Contemp. Math.55, 741–776 (1986).Google Scholar
  26. 26.
    Weil, A.: Algebras with involutions and the classical groups, J. Ind. Math. Soc.24, 589–623 (1961) (=Coll. Papers II, [1960 b], 413–447.)Google Scholar
  27. 27.
    Yanchevskii, V.: Simple algebras with involution and unitary groups, Math. Sbornik93 (1974), English translation: Math. USSR Sbornik,22, 372–384 (1974).Google Scholar
  28. 28.
    Yanchevskii, V.: The commutator subgroups of simple algebras with surjective reduced norms, Dokl. Akad. Nauk SSSR221 (1975), English translation: Soviet Math. Dokl.16, 492–495 (1975).Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • E. Bayer-Fluckiger
    • 1
  • R. Parimala
    • 2
  1. 1.URA 741 du CNRS Laboratoire de MathématiquesBesançonFrance
  2. 2.School of MathematicsTata Institute for Fundamental ResearchBombayIndia

Personalised recommendations