Inventiones mathematicae

, Volume 110, Issue 1, pp 315–335 | Cite as

Kähler-Einstein metrics and the generalized Futaki invariant

  • Weiyue Ding
  • Gang Tian
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Ba] Baily, W.: On the Imbedding of V-manifolds in Projective Space. Am. J. Math.79, 403–430 (1957)Google Scholar
  2. [BM] Bando, S., Mabuchi, T.: Uniqueness of Einstein Kähler Metrics Modulo Connected Group Actions. In: Oda, T. (ed.) Algebraic Geometry, Sendai 1985. (Adv. Stud. Pure Math., vol. 10) Amsterdam: North-Holland & Tokyo: Kinokuniya 1987Google Scholar
  3. [BPV] Barth, W., Peter, A., Van de Ven: Compact Complex Surfaces. Berlin Heidelberg New York: Springer 1984Google Scholar
  4. [Di] Ding, W.: Remarks on the Existence Problem of Positive Kähler-Einstein Metrics. Math. Am.282, 463–471 (1988)Google Scholar
  5. [DT] Ding, W., Tian, G.: The Generalized Moser-Trudinger Inequality. (Preprint 1991)Google Scholar
  6. [Fu1] Futaki, A.: An Obstruction to the Existence of Einstein Kähler Metrics. Invent. Math.73, 437–443 (1983)Google Scholar
  7. [Fu2] Futaki, A.: Kähler-Einstein Metrics and Integral Invariants. (Lect. Notes Math., vol. 1314) Berlin, Heidelberg New York: Springer 1988Google Scholar
  8. [Ma] Mabuchi, T.: K-energy Maps Integrating Futaki Invariants. Tohoku Math. J.,38, 245–257 (1986)Google Scholar
  9. [Md] Mumford, D.: Stability of Projective Varieties. Enseign. Math., II. Sér.23, fasc. 1–2 (1977)Google Scholar
  10. [MU] Mukai, S., Umemura, H.: Minimal Rational Threefolds. In: Raynaud, M., Shioda, T. (eds.) Algebraic Geometry. Proceedings, Tokyo/Kyoto 1982. (Lect. Notes Math., vol. 1016, pp. 490–518) Berlin Heidelberg New York: Springer 1983Google Scholar
  11. [Si] Simon, L.: Lectures on Geometric Measure Theory. (Proc. Cent. Math. Anal. Aust. Natl. Univ., vol. 3) Canberra: Australian National University 1983Google Scholar
  12. [Ti] Tian, G.: On Calabi's Conjecture for Complex Surfaces with Positive First Chern Class. Invent. Math.101 (no. 1), 101–172 (1990)Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • Weiyue Ding
    • 1
  • Gang Tian
    • 2
  1. 1.Institute of MathematicsAcademia, SinicaBeijingChina
  2. 2.Courant Institute of Mathematical SciencesNew York UniversityNew YorkUSA

Personalised recommendations