Inventiones mathematicae

, Volume 110, Issue 1, pp 1–22 | Cite as

Isospectral plane domains and surfaces via Riemannian orbifolds

  • C. Gordon
  • D. Webb
  • S. Wolpert
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Be1] Bérard, P.: Variétés Riemanniennes isospectrales non isométriques. Astérisque177–178, 127–154 (1989)Google Scholar
  2. [Be2] Bérard, P.: Transplantation et isospectralité I. Math. Ann.292, 547–559 (1992)Google Scholar
  3. [Br1] Brooks, R.: Constructing isospectral manifolds. Am. Math. Mon.95, 823–839 (1988)Google Scholar
  4. [Br2] Brooks, R.: On manifolds of negative curvature with isospectral potentials. Topology26, 63–66 (1987)Google Scholar
  5. [BPY] Brooks, R., Perry, P., Yang, P.: Isospectral sets of conformally equivalent metrics. Duke Math. J.58, 131–150 (1989)Google Scholar
  6. [BT] Brooks, R., Tse, R.: Isospectral surfaces of small genus. Nagoya Math. J.107, 13–24 (1987)Google Scholar
  7. [Bu1] Buser, P.: Cayley graphs and planar isospectral domains. In: Sunada, T. (ed.) Proc. Taniguchi Symp. Geometry and analysis on manifolds, 1987. (Lect. Notes Math., vol. 1339, pp. 64–77.) Berlin Heidelberg New York: Springer 1988Google Scholar
  8. [Bu2] Buser, P.: Isospectral Riemann surfaces. Ann. Inst. Fourier36(2), 167–192 (1986)Google Scholar
  9. [BS] Buser, P., Semmler, K.D.: Private communicationGoogle Scholar
  10. [CF] Cassels, J.W.S., Fröhlich, A.: Algebraic Number Theory. London: Academic Press 1967Google Scholar
  11. [C] Chavel, I.: Eigenvalues in Riemannian Geometry. Academic Press, London 1984Google Scholar
  12. [D] DeTurck, D.: Audible and inaudible geometric properties. Proc. of Conference on Geometry and Topology. In: (Rend. Semin. Fac. Sci. Univ. Cagliari, vol. 58, pp. 1–26 (1988 supplement)) Universita di Cagliari 1988Google Scholar
  13. [DG] DeTurck, D., Gordon, C.: Isospectral deformations II: trace formulas, metrics, and potentials. Commun. Pure Appl. Math.42, 1067–1095 (1989)Google Scholar
  14. [Ga] Gassmann, F.: Bemerkung zu der vorstehenden Arbeit von Hurwitz. Math. Z.25, 124–143 (1926)Google Scholar
  15. [Ge] Gerst, I.: On the theory ofn th power residues and a conjecture of Kronecker. Acta Arithmetica17, 121–139 (1970)Google Scholar
  16. [Go] Gordon, C.: When you can't hear the shape of a manifold. Math. Intell.11, 39–47 (1989)Google Scholar
  17. [GWW] Gordon, C., Webb, D., Wolpert, S.: One can't hear the shape of a drum. Bull. Am. Math. Soc.27, 134–138 (1992).Google Scholar
  18. [Gu] Guralnik, R.: Subgroups inducing the same permutation representation. J. Algebra81, 312–319 (1983)Google Scholar
  19. [K] Kac, M.: Can one hear the shape of a drum? Am. Math. Mon.73, 1–23 (1966)Google Scholar
  20. [P] Perlis, R.: On the equation 22-1. J. Number Theory9, 342–360 (1977)Google Scholar
  21. [Sa] Satake, I.: On a generalization of the notion of manifold. Proc. Natl. Acad. Sci., USA42, 359–363 (1956)Google Scholar
  22. [Sc] Scott, G.P.: The geometries of 3-manifolds. Bull. Lond. Math. Soc.15, 401–487 (1983)Google Scholar
  23. [Su] Sunada, T.: Riemannian coverings and isospectral manifolds. Ann. Math.121, 248–277 (1985)Google Scholar
  24. [T] Thurston, W.P.: The geometry and topology of 3-manifolds. (Mimeographed lecture notes) Princeton University 1976–79Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • C. Gordon
    • 1
    • 2
  • D. Webb
    • 1
    • 2
  • S. Wolpert
    • 3
  1. 1.Department of MathematicsDartmouth CollegeHanoverUSA
  2. 2.USA
  3. 3.Department of MathematicsUniversity of MarylandCollege ParkUSA

Personalised recommendations