Advertisement

Inventiones mathematicae

, Volume 111, Issue 1, pp 465–539 | Cite as

The cyclotomic trace and algebraic K-theory of spaces

  • M. Bökstedt
  • W. C. Hsiang
  • I. Madsen
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [A] Adams, J.F.: Prerequisities on equivariant theory for Carlsson's lecture. In: Madsen, I., Oliver, B. (eds.) Algebraic Topology, Aarhus 1982. (Lect. Notes Math., vol. 1051, pp. 483–532) Berlin Heidelberg New York: Springer 1984Google Scholar
  2. [Be] Bentzen, S.: On the image of the trace Coefficient homomorphism. Aarhus University, July 1991 (Preprint)Google Scholar
  3. [BM] Bentzen, S., Madsen, I.: Trace maps in algebraic K-theory and the Coates-Wiles homomorphism. J. reine angew. Math.411, 171–195 (1990)Google Scholar
  4. [B] Bökstedt, M.: Topological Hochschild homology Topology (to appear)Google Scholar
  5. [B1] Bökstedt, M.: Topological Hochschild homology of ℤ and ℤ/p. Ann. Math. (to appear)Google Scholar
  6. [BCCGHM] Bökstedt, M., Carlsson, G., Cohen, R., Goodwillie, T., Hisiang, W.C., Madsen, I.: The algebraic K-theory of simply connected spaces (complete case). Aarhus University, June, 1989 (Preprint)Google Scholar
  7. [BF] Burghelea, D., Fiedorowicz, Z.: Cyclic homology and algebraic K-theory of spaces II. Topology25 (1986)Google Scholar
  8. [BP] Barratt, M., Priddy, S.: On the homology of non-connected monoids and their associated groups. Comment. Math. Helv.47, 1–14 (1972)Google Scholar
  9. [BK] Bousfield, A.K., Kan, D.M.: Homotopy limits, completions and Localizations (Lect. Notes Math., vol. 304) Berlin Heidelberg New York: Springer 1972.Google Scholar
  10. [C] Carlsson, G.: Equivariant stable homotopy and Segal's Burnside ring conjecture. Ann. Math.120, 189–224 (1984)Google Scholar
  11. [CJ] Cohen, R., Jones, J.: Trace maps and Chern characters in K-theory. (Preprint)Google Scholar
  12. [Co] Connes, A.: Cohomologic cyclique et Foncteur Ext. C. R. Acad. Sci. Paris296, 953–958 (1983)Google Scholar
  13. [tD] T. tom Dieck, Orbittvpen und äquivariante homologie II. Arch. Math.26, 650–662 (1975)Google Scholar
  14. [DHK] Dwyer, W.G., Hopkins, M.J., Kan, D.M.: The homotopy theory of cyclic sets. Trans. Am. Math. Soc.291, 281–289 (1985).Google Scholar
  15. [DL] Dyer, E., Lashof, R.: Homology of iterated loop spaces. Am. J. Math.84, 35–88 (1962)Google Scholar
  16. [G] Goodwillie, T.: Cyclic homology, derivations and the free loop spaces. Topoloty24, 187–215 (1985)Google Scholar
  17. [G1] Goodwillie, T.: On the general linear group and Hochshild homology. Ann. Math.121, 383–407 (1985)Google Scholar
  18. [G2] Goodwillie, T., Letter to Waldhausen, August 10, (1987)Google Scholar
  19. [Gr] Grayson, D.: Higher algebraic K-theory II [After D. Quillen] Algebraic K-theory. (Lect. Notes Math., vol. 551) Berlin Heidelberg New York: Springer 1976Google Scholar
  20. [H] W.-C. Hsiang, Geometric applications of algebraic K-theory. In: Ciesielski, Z., Olech, Z. (eds.) Proc. ICM, PWN Warsaw: pp. 99–118, 1983Google Scholar
  21. [J] Jones, J.D.S.: Cyclic homology and equivariant homology. Invent. Math.87, 403–423 (1987)Google Scholar
  22. [L] Loday, J.: K-théorie algebrique et représentations de groupes. Ann. Sci. Ec. Norm. Super., IV Ser.9, 309–377 (1976)Google Scholar
  23. [LQ] Loday, J., Quillen, D.: Cyclic homology and the Lie algebra homotopy. (Lect. Notes Math., vol. 1231) Berlin Heidelberg New York: Springer 1976Google Scholar
  24. [McG] McGibbon, C.A.: Stable properties of rank one loop structures. Topology20, 109–118 (1981)Google Scholar
  25. [MMM] Mann, B., Miller, E., Miller, H.: S1-equivariant function spaces and charcteristic classes. Trans. Am. Math. Soc.295, (no. 1) 233–256 (1986)Google Scholar
  26. [May] May, J.P.: The geometry of iterated loop spaces. (Lect. Notes Math., vol. 271) Berlin Heidelberg New York: Springer 1972Google Scholar
  27. [May 1] May, J.P.:E spaces, group completions, and permutative categories. (London. Math. Soc. Lect. Note Ser., vol. 11, pp. 61–94) Cambridge London: Cambridge Univerity Press 1974Google Scholar
  28. [Mi] Milnor, J.W.: On axiomatic homology theory. Pac. J. Math.12, 337–341 (1962)Google Scholar
  29. [OT] Oliver, R., Taylor, L.: Logarithmic descriptions of Whitehead groups and class groups forp-groups. (Mem. Am. Math. Soc., vol. 76, no. 392) Providence, RI: Am. Math. Soc. 1988Google Scholar
  30. [Q] Quillen, D.: Higher algebraic K-theory I. In: Bass, H (ed.) Algebraic K-theory I. (Lect. Notes Math., vol. 341, pp. 85–147) Berlin Heidelberg New York: Springer 1973Google Scholar
  31. [R] Ravanel, D.: The segal conjecture for cyclic groups and its consequences. Am. J. Math.106, 415–446 (1984)Google Scholar
  32. [RS] Rourke, C., Sanderson, B.: Δ-sets I, II. Q. J. Math. Oxf.22, 321–338, 465–485 (1971).Google Scholar
  33. [Se] Segal, G.B.: Equivariant stable homotopy theory. vol. 2. In Paris: Gauthier-Villars 1971 Proc. ICM. Nice, 1970, pp. 59–63.Google Scholar
  34. [Se1] Segal, G.B.: Categories and cohomology theories, Topoloty13, 293–312 (1974)Google Scholar
  35. [Se2] Segal, G.B.: Configuration-spaces and iterated loop-spaces. Invent. Math.21, 213–221 (1973)Google Scholar
  36. [Sh] Shimakawa, K.: Infinite loopG-spaces associated to MonoidalG-graded categories. Publ. Res. Inst. Math. Sci.25 (no. 2) 239–262 (1989)Google Scholar
  37. [S1] Soulé, C. K-théorie des anneaux d'entiers de corps de nombres et cohernologie etale. Invent. Math.55, 251–295 (1979)Google Scholar
  38. [S2] Soulé, C.: On higherp-adic regulators. In: Friedlander, E.M., Stein, M.R. (eds.) Algebraic K-theory. (Lect. Notes Math., vol. 854, pp. 472–501) Berlin Heidelberg New York: Springer 1980Google Scholar
  39. [W1] Waldhausen, F.: Algebraic K-theory of topological spaces. I. In: Milgram, R.J. (ed.) Algebraic and geometric topology. (Proc. Symp. Pure Math., vol. 32, pp. 35–60) Providence, RI: Am. Math. Soc. 1978Google Scholar
  40. [W2] Waldhausen, F.: Algebraic K-theory of topological spaces. II. In: Dupont, J.L., Madsen, I.H. (eds.) Algebraic Topology. Aahus 1978. (Lect. Notes. Math., vol. 356–394) Berlin Heidelberg New York: Springer 1979Google Scholar
  41. [W3] Waldhausen, F., Algebraic K-theory of spaces, localization, and the chromatic filtration of stable homotopy. In: Madsen, I., Oliver, B. (eds.) Algebraic Topology. Aarhus 1982. (Lect. Notes Math., vol. 1051, pp. 173–196) Berlin Heidelberg New York: 1984Google Scholar
  42. [W4] Waldhausen, F.: Algebraic K-theory of spaces, concordance and stable homotopy theory. In: Browder, W. (ed.) Algebraic topology and algebraic K-theory. (Ann. Math. Stud. no. 113, pp. 392–41) Princeton: Princeton University Press 1987Google Scholar
  43. [Wa] Washington, L.: Introduction to cyclotomic fields. (Grad. Texts Math., vol. 83) Berlin Heidelberg New York: Springer 1982Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • M. Bökstedt
    • 1
  • W. C. Hsiang
    • 2
  • I. Madsen
    • 1
  1. 1.Department of MathematicsAarhus UniversityAarhusDenmark
  2. 2.Department of MathematicsPrinceton UniversityPrincetonUSA

Personalised recommendations