Inventiones mathematicae

, Volume 111, Issue 1, pp 77–111 | Cite as

A characterization of compact convex polyhedra in hyperbolic 3-space

  • Craig D. Hodgson
  • Igor Rivin
Article

Summary

In this paper we study the extrinsic geometry of convex polyhedral surfaces in three-dimensional hyperbolic spaceH3. We obtain a number of new uniqueness results, and also obtain a characterization of the shapes of convex polyhedra inH3 in terms of a generalized Gauss map. This characterization greatly generalizes Andre'ev's Theorem.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aleksandrov, A.D.: Convex Polyhedra (in Russian) Moscow: GITTL 1950; (German translation): Berlin: Akademie Verlag 1958)Google Scholar
  2. 2.
    Aleksandrov, A.D., Berestovskii, V.N., Nikolaev, I.G.: Generalized Riemannian spaces. Russ. Math. Surv.41(3), 1–54 (1986)Google Scholar
  3. 3.
    Andreev, E.M.: On convex polyhedra in Lobachevskii space. Math. USSR, Sb.12, 413–440 (1970)Google Scholar
  4. 4.
    Beardon, A.F.: The geometry of discrete groups. Berlin Heidelberg New York: Springer 1983Google Scholar
  5. 5.
    Beem, J.K., Ehrlich, P.E.: Global Lorentzian Geometry. (Pure Appl., Math. vol. 67) New York: Dekker 1981Google Scholar
  6. 6.
    Berger, M.: Géométrie, vols. 1–5. Paris: Cedic/Fernand Nathan 1977; (English translation: Geometry I and II. Berlin Heidelberg New York: Springer 1987)Google Scholar
  7. 7.
    Bowditch, B.H.: Notes on locally CAT(1) spaces. University of Aberdeen (Preprint 1992)Google Scholar
  8. 8.
    Cauchy, A.L.: Sur les polygones et polyèdres, 2nd memoir. J. Éc Polytechnique19, 87–98 (1813)Google Scholar
  9. 9.
    Cheeger, J. Ebin. D.G.: Comparison Theorems in Riemannian Geometry. (North-Holland Math. Libr., vol. 9) Amsterdam Oxford: North-Holland 1975Google Scholar
  10. 10.
    Colin de Verdière, Y., Marin, A.: Triangulations presque Équilatérales des surfeces. J. Differ. Geom.32, 199–207 (1990)Google Scholar
  11. 11.
    Gromov, M.L.: Hyperbolic groups. In: Gersten S.M. (ed.) Essays in group theory, pp. 75–263 (Pub., Math. Sci. Res. Inst., vol 8) Berlin Heidelberg New York: Springer 1987Google Scholar
  12. 12.
    Gromov, M.L.: Structures Métriques pour les Variétés Riemanniennes. Paris: Cedic/Fernand Nathan 1982.Google Scholar
  13. 13.
    Hodgson, C.D.: Deduction of Andreev's Theorem from Rivin's Characterization of Convex Hyperbolic Polyhedra. In: Topology 90. Proceedings of the Research Semester in Low Dimensional Topology at O.S.U Berlin New York: de Gruyter (to appear)Google Scholar
  14. 14.
    Klingenberg, W.: Global Riemannian Geometry. Berlin New York: de Gruyter 1982.Google Scholar
  15. 15.
    O'Neill, B.: Semi-Riemannian Geometry; with applications to relativity. New York: Academic Press 1983Google Scholar
  16. 16.
    Pogorelov, A.V.: Extrinsic geometry of Convex Surfaces. (Transl. Math. Monogr., vol.35) Providence: Am. Math. Soc. 1973Google Scholar
  17. 17.
    Rivin, I.: On geometry of convex ideal polyhdra in hyperbolic 3-space. Topology (to appear)Google Scholar
  18. 18.
    Rivin, I.: A characterization of ideal polyhedra in hyperbolic 3-space. (Preprint 1992)Google Scholar
  19. 19.
    Rivin, I.: On geometry of convex polyhedra in hyperbolic 3-space. Ph. D. thesis, Princeton (June 1986)Google Scholar
  20. 20.
    Rivin, I.: Some applications of the hyperbolic volume formula of Lobachevsky and Milnor (submitted 1992)Google Scholar
  21. 21.
    Royden, H.L.: Real Analysis. New York. Macmillan 1968Google Scholar
  22. 22.
    Spivak, M.: A Comprehensive Introduction to Differential Geometry, 5 vol. Berkeley: Publish or Perish 1979Google Scholar
  23. 23.
    Stoker, J.J.: Geometric problems concerning polyhedra in the large. Commun. Pure Applied Math.21, 119–168 (1968)Google Scholar
  24. 24.
    Thurston, W.P.: Geometry and Topology of 3-manifolds. Revised Lectere Notes, Princeton Univ. Math. Dept. (1982)Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • Craig D. Hodgson
    • 1
  • Igor Rivin
    • 2
  1. 1.Mathematics DepartmentUniversity of MelbourneParkvilleAustralia
  2. 2.NEC Research Institute and Mathematics DepartmentPrinceton UniversityPrincetonUSA

Personalised recommendations