Inventiones mathematicae

, Volume 100, Issue 1, pp 431–476

On modular representations of\((\bar Q/Q)\) arising from modular forms

  • K. A. Ribet
Article
  • 484 Downloads

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Atkin, A.O.L., Lehner, J.: Hecke operators onF o(m). Math. Ann.185, 134–160 (1970)Google Scholar
  2. 2.
    Carayol, H.: Sur la mauvaise réduction des courbes de Shimura. Compos. Math.59, 151–230 (1986)Google Scholar
  3. 3.
    Cerednik, I.V.: Uniformization of algebraic curves by discrete arithmetic subgroups of PGL2(k w) with compact quotients (in Russian). Math. Sb.100, 59–88 (1976). Translation in Math. USSR Sb.29, 55–78 (1976)Google Scholar
  4. 4.
    Deligne, P., Rapoport, M.: Les schémas de modules de courbes elliptiques. (Lecture Notes in Math. Vol.349, pp. 143–316.) Berlin-Heidelberg-New York: Springer 1973Google Scholar
  5. 5.
    Deligne, P., Serre, J.-P.: Formes modulaires de poids 1. Ann. Sci. Ec. Norm. Sup., IV. Ser.7, 507–530 (1974).Google Scholar
  6. 6.
    Deuring, M.: Die Typen der Multiplikatorenringe elliptischer Funktionenkörper. Abh. Math. Semin. Univ. Hamb.14, 197–272 (1941)Google Scholar
  7. 7.
    Drinfeld, V.G.: Coverings ofp-adic symmetric retions (in Russian). Funkts. Anal. Prilozn10, 29–40 (1976). Translation in Funct. Anal. Appl.10, 107–115 (1976)Google Scholar
  8. 8.
    Edixhoven, S.J.: L'action de l'algèbre de Hecke sur les groupes de composantes des jacobiennes des courbes modulaires est “Eisenstein”. PreprintGoogle Scholar
  9. 9.
    Eichler, M.: Quadratische Formen und Modulfunktionen. Acta Arith.4, 217–239 (1958)Google Scholar
  10. 10.
    Frey, G.: Links between stable elliptic curves and certain diophantine equations. Ann. Univ. Sarav., Ser Math.1, 1–40 (1986)Google Scholar
  11. 11.
    Grothendieck, A.: SGA7 I, exposé IX. (Lecture Notes in Math. Vol.288, pp. 313–523.) Berlin-Heidelberg-New York: Springer 1972Google Scholar
  12. 12.
    Jacquet, H., Langlands, R.P.: Automorphic forms on GL(2). (Lecture Notes in Math. Vol.114). Berlin-Heidelberg-New York: Springer 1970Google Scholar
  13. 13.
    Jordan, B., Livné, R.: local diophantine properties of Shimura curves. Math. Ann.270, 235–248 (1985)Google Scholar
  14. 14.
    Jordan, B., Livné, R.: On the Néron model of Jacobians of Shimura curves. Compos. Math.60, 227–236 (1986)Google Scholar
  15. 15.
    Katz, N.M., Mazur, B.: Arithmetic Moduli of Elliptic Curves. Ann. Math. Stud.108 (1985)Google Scholar
  16. 16.
    Kurihara, A.: On some examples of equations defining Shimura curves and the Mumford uniformization. J. Fac., Sci., Univ. Tokyo, Sec. IA25, 277–300 (1979)Google Scholar
  17. 17.
    Langlands, R.P.: Some contemporary problems with origins in the Jugendtraum. Proc. Symp. Pure Math.28, 401–418 (1976)Google Scholar
  18. 18.
    Mazur, B.: Modular curves and the Eisenstein ideal. Publ. Math., Inst. Hautes Etud. Sci.47, 33–186 (1977)Google Scholar
  19. 19.
    Mazur, B.: Rational isogenies of prime degree. Invent. Math.44, 129–162 (1978)Google Scholar
  20. 20.
    Mazur, B.: Letter to J-F. Mestre (16 August 1985)Google Scholar
  21. 21.
    Mazur, B., Ribet, K.: Two-dimensional represenations in the arithmetic of modular curves. Astérisque (to appear)Google Scholar
  22. 22.
    Milne, J.: Etude d'une classe d'isogénie. In: Variétés de Shimura et FonctionsL, Breen, L., Labesse, J-P. (eds.) Publ. Math. Univ. Paris VII6, 73–81 (1979)Google Scholar
  23. 23.
    Oda, T.: The first de Rham cohomology group and Dieudonné modules. Ann. Sci. Ec. Norm. Sup. IV, Ser.2, 63–135 (1969)Google Scholar
  24. 24.
    Raynaud, M.: Specialisation du foncteur de Picard. Publ. Math., Inst. Hautes Etud. Sci.38, 27–76 (1970)Google Scholar
  25. 25.
    Raynaud, M.: Schémas en groupes de type (p,...p). Bull. Soc. Math. France102, 241–280 (1974)Google Scholar
  26. 26.
    Ribet, K.: Sur les variétés abéliennes à multiplications réelles. C.R. Acad. Sc. Paris, Sér. A291, 121–123 (1980)Google Scholar
  27. 27.
    Ribet, K.: Modp Hecke operators and congruences between modular forms. Invent. Math.71, 193–205 (1983)Google Scholar
  28. 28.
    Ribet, K.: Congruence relations between modular forms. Proc. Int. Congr. Math. pp. 503–514 (1983)Google Scholar
  29. 29.
    Ribet, K.: Bimodules and abelian surfaces. Adv. Stud. Pure Math.17, 359–407 (1989)Google Scholar
  30. 30.
    Ribet, K.: On the component groups and the Shimura subgroup ofJ o (N). Sém. Th. Nombres, Université Bordeaux, 1987–88Google Scholar
  31. 31.
    Ribet, K.: Raising the levels of modular representations, Séminaire de Théorie des Nombres, Paris 1987–88. Progr. Math.81, 259–271 (1990)Google Scholar
  32. 32.
    Serre, J.-P., Complex multiplication. In: Algebraic Number Theory, Cassels, JWS, Fröhlich, A. (eds.). Washington, DC: Thompson Book Company 1967Google Scholar
  33. 33.
    Serre, J-P.: Arbres, Amalgames, SL2. Astérisque46 (1977). English translation: Trees. Berlin-Heidelberg-New York: Springer 1980Google Scholar
  34. 34.
    Serre, J-P.: Lettre à J-F. Mestre (13 août 1985). Contemp. Math.67, 263–268 (1987)Google Scholar
  35. 35.
    Serre, J-P.: Sur les représentations modulaires de degré 2 de Gal\((\bar Q/Q)\). Duke Math. J.54, 179–230 (1987)Google Scholar
  36. 36.
    Shimizu, H.: On the zeta functions of quaternion algebras. Ann. Math.81, 166–193 (1965)Google Scholar
  37. 37.
    Shimura, G.: Construction of class fields and zeta functions of algebraic curves. Ann. Math.85, 58–159 (1967)Google Scholar
  38. 38.
    Shimura, G.: On canonical models of arithmetic quotients of bounded symmetric domains. Ann. Math.91, 144–222 (1970)Google Scholar
  39. 39.
    Shimura, G.: Introduction to the Airthmetic Theory of Automorphic Functions. Princeton: Princeton University Press 1971Google Scholar
  40. 40.
    Tate, J.: Endomorphisms of abelian varieties over finite fields. Invent. Math.2, 134–144 (1966)Google Scholar
  41. 41.
    Vignéras, M-F.: Arithmétíque des Algèbres de Quaternions. (Lecture Notes in Math., Vol.800. Berlin-Heidelberg-New York: Springer 1980Google Scholar
  42. 42.
    Waterhouse, W.C.: Abelian varieties over finite fields. Ann. Sci. Ec. Norm. Sup. IV. Ser.2, 521–560 (1969)Google Scholar
  43. 42.
    [EGAIV] Grothendieck, A.: Etude locale des schémas et des morphismes de schémas (quatrième partie). Publ. Math, Inst. Hautes Etud. Sci.32, 5–361 (1967)Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • K. A. Ribet
    • 1
  1. 1.Department of MathematicsUniversity of CaliforniaBerkeleyUSA

Personalised recommendations