Inventiones mathematicae

, Volume 100, Issue 1, pp 419–430 | Cite as

Motives for modular forms

  • A. J. Scholl
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Beilinson, A.A.: Higher regulators and values ofL-functions. J. Sov. Math.30, 2036–2070 (1985)Google Scholar
  2. 2.
    Beilinson, A.A.: Higher regulators of modular curves. Applications of algelbraicK-theory to algebraic geometry and number theory. Contemp. Math.55, 1–34 (1986)Google Scholar
  3. 3.
    Bloch, S.A., Ogus, O.: Gersten's conjecture and the homology of schemes. Ann. Sci. Éc. Norm. Super., VI. Ser.7, 181–202 (1974)Google Scholar
  4. 4.
    Deligne, P.: Formes modulaires et représentationsl-adiques. Sém. Bourbaki, éxp. 355. Lect. Notes Math., vol.179, pp. 139–172. Berlin-Heidelberg-New York: Springer 1973Google Scholar
  5. 5.
    Deligne, P., Rapoport, M.: Les schémas de modules des courbes elliptiques. Modular functions of one variable II. (Lect. Notes Math. vol.349, pp. 143–316). Berlin-Heidelberg-New York: Springer 1973Google Scholar
  6. 6.
    Fontaine, J.-M., Messing, W.:p-adic periods andp-adic étale cohomology. Current trends in arithmetical algebraic geometry, ed. K. Ribet. Contemp. Math.67, 179–207 (1987)Google Scholar
  7. 7.
    Gillet, H., Messing, W.: Cycle classes Riemann-Roch for crystalline cohomology. Duke Math. J.55, 501–538 (1987)Google Scholar
  8. 8.
    Jannsen, U.: Mixed motives and algebraicK-theory. Preprint, University of Regensburg (February 1988)Google Scholar
  9. 9.
    Katz, N.M.:p-adic properties of modular schemes and modular forms. Modular functions of one variable III. (Lect. Notes Math., vol.350, pp. 69–190). Berlin-Heidelberg-New York: Springer 1973Google Scholar
  10. 10.
    Katz, N.M., Mazur, B.: Arithmetic moduli of elliptic curves. Ann. Math. Stud. vol.108, Princeton University Press, 1985Google Scholar
  11. 11.
    Katz, N.M., Messing, W.: Some consequences of the Riemann hypothesis for varieties over finite fields. Invent. Math.23, 73–77 (1974)Google Scholar
  12. 12.
    Langlands, R.P.: Modular forms andl-adic representations. Modular functions of one variable II. (Lect. Notes Math., vol.349, pp. 361–500). Berlin-Heidelberg-New York: Springer 1973Google Scholar
  13. 13.
    Manin, Yu. I.: Correspondences, motifs and monoidal transformations.Math. USSR Sb. 6, 439–470 (1968)Google Scholar
  14. 14.
    Scholl, A.J.: Modular forms and de Rham cohomology; Atkin-Swinnerton-Dyer congruences. Invent. Math.79, 49–77 (1985)Google Scholar
  15. 15.
    Scholl, A.J.: Higher regulators and special values ofL-functions of modular forms. In preparationGoogle Scholar
  16. 16.
    Shimura, G.: Introduction to the arithmetic theory of automorphic functions. Publ. Math. Soc. Japan11, (Iwanami Shoten/Princeton, 1971)Google Scholar
  17. 17.
    Faltings, G.: Crystalline cohomology andp-adic representations (Preprint).Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • A. J. Scholl
    • 1
  1. 1.Department of Mathematical Sciences, Science LaboratoriesUniversity of DurhamDurhamEngland

Personalised recommendations