Inventiones mathematicae

, Volume 100, Issue 1, pp 231–257

Concernant la relation de distribution satisfaite par la fonction φ associée à un réseau complexe

  • G. Robert
Article

Summary

For any pair of latticesL andL satisfying i)LL and ii) the indexN ofL intoL is prime to 6, we construct from the usual φ-function ofL(cf. no 1) some elliptic function
$$\psi = \psi (z;L,\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{L} )$$
of the variablez, with period latticeL, and divisor
$$N(0)_L - \sum\limits_{i - 1}^N {(t_i )_L } $$
over the torus ℂL, where the complex numbersti, 1≦iN, describe a complete set of representatives of the quotientL/L.

The set of all these functions satisfy the distribution relation (1) below.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographie

  1. 1.
    Coates, J., Sinnott, W.: Integrality properties of the values of partial zeta functions. Proc. London Math. Soc.34, 365–384 (1977)Google Scholar
  2. 2.
    Faltings, G.: Calculus on arithmetic surfaces. Ann. Math.119, 387–424 (1984)Google Scholar
  3. 3.
    Hirzebruch, F., Zagier, D.: The Atiyah-Singer theorem and elementary number theory. (Math. Lectures Series, vol. 3). Berkeley: Publish or Perish 1974Google Scholar
  4. 4.
    Kubert, D., Lang, S.: Modular units (Grundleh. der math. Wiss., vol. 244). Berlin-Heidelberg-New York: Springer 1981Google Scholar
  5. 5.
    Oukhaba, H.: Texte en préparationGoogle Scholar
  6. 6.
    Ramachandra, K.: Some applications of Kronecker's limit formulas. Ann. Math.80, 104–148 (1964)Google Scholar
  7. 7.
    Robert, G.: Unités elliptiques. Bull. Soc. Math. France Mém.36 (1973)Google Scholar
  8. 8.
    Robert, G.: Nombres de Hurwitz et unités elliptiques. Ann. Sc. Ec. Norm. Sup., IV. Sér.11, 297–389 (1978)Google Scholar
  9. 9.
    Rubin, K.: Tate-Shafarevich groups andL-functions of elliptic curves with complex multiplication. Invent. Math.89, 527–559 (1987)Google Scholar
  10. 10.
    Schertz, R.: Niedere Potenzen elliptischer Einheiten, Proc. Int. Conf. on Class Numbers and Fundamental Units (Japan, June 1986, Katata) 67–88Google Scholar
  11. 11.
    de Shalit, E.: Iwasawa theory of elliptic curves with complex multiplication. (Persp. in math., vol. 3). New York: Academic Press 1987Google Scholar
  12. 12.
    Siegel, C.L.: A simple proof of\(\eta ( - 1/\tau ) = \eta (\tau )\sqrt {\tau /i} \). (Mathematika, vol. 1, p. 4 1954), cf. (Op. Sc., vol. III no 62, Berlin-Heidelberg-New York: Springer 1966Google Scholar
  13. 13.
    Siegel, C.L.: Lectures notes on advanced analytic number theory. Tata Inst. of Fund. Research Research (1961) BombayGoogle Scholar
  14. 14.
    Stark, H.M.:L-Functions ats=1, IV, First Derivatives ats=0. Adv. Math.35, 197–235 (1980)Google Scholar
  15. 15.
    Weil, A.: Introduction à l'étude des variétés kählériennes. Paris: Hermann 1957Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • G. Robert
    • 1
  1. 1.Institut Fourier, MathématiquesUniversité de Grenoble ISaint-Martin d'HèresFrance

Personalised recommendations