Advertisement

Inventiones mathematicae

, Volume 100, Issue 1, pp 167–206 | Cite as

Groups generated byk-transvections

  • F. G. Timmesfeld
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aigner, M.: Combinatorial Theory. Grundlehren der Mathem. Wissenschaften 234. Berlin Heidelberg New York: Springer 1979Google Scholar
  2. 2.
    Bruck, R.H.: A Survey of Binary Systems. Ergebnisberichte. Berlin Heidelberg New York: Springer 1958Google Scholar
  3. 3.
    Buekenhout, F., Shult, E.: On the foundations of polar geometry. Geom. Ded.3, 155–170 (1974)Google Scholar
  4. 4.
    Carter, R.: Simple groups of Lie-type. New York: Wiley and Sons 1972Google Scholar
  5. 5.
    Coxeter, H.S.M., Moser, W.O.: Generators and relations for discrete groups. Ergebnisberichte 14. Berlin Heidelberg New York: Springer 1957Google Scholar
  6. 6.
    Dieudonné, J.: La géométrie des groups classiques. Ergebnisberichte 5. Berlin Heidelberg New York: Springer 1963Google Scholar
  7. 7.
    Faulkner, J.R.: Groups with Steinberg relations and coordinatization of polygonal geometries. Mem. Am. Math. Soc. 185 (1977)Google Scholar
  8. 8.
    Fischer, B.: Finite groups generated by 3-transpositions. Mim. Notes University of Warwick (1969) unpublished; and Invent. Math.13, 232–246 (1971)Google Scholar
  9. 9.
    Fong, P., Seitz, G.: Groups with a BN-pair of rank 2, I, II. Invent. Math.21, 1–57 (1973) and24, 191–239 (1974)Google Scholar
  10. 10.
    Hall, J.I.: Graphs, geometry, 3-transpositions and symplecticF 2-transvection groups. Proc. Lond. Math. Soc.58, 89–111 (1989)Google Scholar
  11. 11.
    Hall, J.I.: Some 3-transposition groups with normal subgroups. Proc. Lond. Math. Soc.58, 112–136 (1989)Google Scholar
  12. 12.
    Manin, Yu.I.: Cubic Forms, North-Holland Mathematical Library 1974Google Scholar
  13. 13.
    Tits, J.: Buildings of Spherical Type and Finite BN-pairs. (Lect. Notes Math. vol. 386.) Berlin Heidelberg New York: Springer 1974Google Scholar
  14. 14.
    Tits, J.: Classification of algebraic semisimple groups. Proc. Symp. Pure Math.IX, 33–62 (1966)Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • F. G. Timmesfeld
    • 1
  1. 1.Mathematisches InstitutGiessenFRG

Personalised recommendations