Inventiones mathematicae

, Volume 100, Issue 1, pp 143–165

Modular Lagrangians and the theta multiplier

  • Dennis Johnson
  • John J. Millson
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bass, H., Pardon, W.: Some hybrid symplectic group phenomena. Algebra53, 327–333 (1978)Google Scholar
  2. 2.
    Dieudonné, J.: Sur les Groupes Classiques. Publications de l'Institut de Mathematique de l'Université de Strasbourg VI, Hermann, Paris, 1967Google Scholar
  3. 3.
    Friedberg, S.: Theta function transformation formulas and the Weil representation. J. Number Theory20, 121–127 (1985)Google Scholar
  4. 4.
    Guillemin, V., Sternberg, S.: Geometric Asymptotics. A.M.S. Math. Surveys 14, Providence 1977Google Scholar
  5. 5.
    Igusa, J.: On the graded ring of theta-constants. Am. J. Math.86, 219–246 (1964); II,88, 221–236 (1966)Google Scholar
  6. 6.
    Jones, B.: The arithmetic Theory of Quadratic Forms. The Carus Mathematical Monographs 10. New York: Wiley 1967Google Scholar
  7. 7.
    Lion, G., Vergne, M.: The Weil Representation, Maslov Index and Theta Series. Progress in Mathematics, vol. 6. Boston: Birkhäuser 1980Google Scholar
  8. 8.
    Millson, J.: Cycles and harmonic forms on locally symmetric spaces. Can. Math. Bull.28, 3–38 (1985)Google Scholar
  9. 9.
    Mumford, D.: Tata Lectures on Theta I. Progress in Mathematics, vol. 28. Boston: Birkhäuser 1984Google Scholar
  10. 10.
    Rao, R.: On some explicit formulas in the theory of Weil representations (Preprint)Google Scholar
  11. 11.
    Stark, H.M.: On the transformation formula for the symplectic theta function and applications. J. Fac. Sci. Univ. Tokyo29, 1–12 (1982)Google Scholar
  12. 12.
    Steinberg, R.: Lectures on Chevalley Groups. Yale University Lecture Notes, 1967Google Scholar
  13. 13.
    Styer, R.: Prime determinant matrices and the symplectic theta function. Am. J. Math.106, 645–664 (1984)Google Scholar
  14. 14.
    Weil, A.: Sur certains groupes d'operateurs unitaires. Acta Math.111, 143–211 (1964)Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • Dennis Johnson
    • 1
  • John J. Millson
    • 1
  1. 1.Mathematics DepartmentUniversity of CaliforniaLos AngelesUSA

Personalised recommendations