Inventiones mathematicae

, Volume 100, Issue 1, pp 25–47 | Cite as

Non-continuity of the action of the modular group at Bers' boundary of Teichmuller space

  • Steven P. Kerckhoff
  • William P. Thurston
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abikoff, W.: Degenerating families of Riemann surfaces (Preprint)Google Scholar
  2. 2.
    Bers, L.: The action of the modular group on the complex boundary. In: Kra, I., Maskit, B. (eds.) Riemann Surfaces and Related Topics (Ann. Math. Stud., vol. 97, pp. 33–52). Princeton: Princeton University Press 1981Google Scholar
  3. 3.
    Bers, L.: On the boundaries of Teichmuller space and on Kleinian groups, I. Ann. Math.91, 570–600 (1970)Google Scholar
  4. 4.
    Duren, P.: Univalent Functions. New York Berlin Heidelberg: Springer 1983Google Scholar
  5. 5.
    Earle, C., Marden, A.: (Preprint)Google Scholar
  6. 6.
    Harvey, W.: Chabauty spaces of discrete groups. In: Greenberg, L. (ed.) Groups and Riemann Surfaces. Ann. Math. Stud., vol. 79, pp. 239–246. Princeton: Princeton Univ. Press 1974Google Scholar
  7. 7.
    Jorgensen, T., Marden, A.: Algebraic and geometric convergence of Kleinian groups. (Preprint)Google Scholar
  8. 8.
    Lehto, O., Virtanen, K.: Quasiconformal Mappings in the Plane. New York Berlin Heidelberg: Springer 1973Google Scholar
  9. 9.
    Marden, A.: The geometry of finitely generated Kleinian groups. Ann. Math.99, 384–462 (1974)Google Scholar
  10. 10.
    Marden, A.: Geometrically finite Kleinian groups. In: Harvey, W. (ed.) Discrete groups and automorphic functions. London New York San Francisco: Academic Press 1977, pp. 259–293Google Scholar
  11. 11.
    Maskit, B.: On Klein's combination theorem III. Ann. Math. Stud., vol. 66, pp. 297–316. In: Ahlfors, L. (ed.) Advances in the Theory of Riemann Surfaces. Princeton: Princeton University Press 1971Google Scholar
  12. 12.
    Sullivan, D.: On the ergodic theory at infinity of an arbitrary discrete group of hyperbolic motions. Ann. Math. Stud., vol. 97, pp. 465–496. In: Kra, I., Maskit, B. (eds.) Riemann Surfaces and Related Topics, 1981Google Scholar
  13. 13.
    Thurston, W.: The geometryand topology of 3-manifolds. Bound Lect. notes. Princeton UniversityGoogle Scholar
  14. 14.
    Waldhausen, F.: On irreducible 3-manifolds which are sufficiently large. Ann. Math.87, 56–88 (1968)Google Scholar
  15. 15.
    Waldhausen, F.: Eine Verallgemeinerung des Schleifensatzes. Topology6, 501–504 (1967)Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • Steven P. Kerckhoff
    • 1
  • William P. Thurston
    • 2
  1. 1.Department of MathematicsStanford UniversityStanfordUSA
  2. 2.Department of MathematicsPrinceton UniversityPrincetonUSA

Personalised recommendations