Inventiones mathematicae

, Volume 100, Issue 1, pp 1–24

Estimating isogenies on elliptic curves

  • D. W. Masser
  • G. Wüstholz
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [AM] Anderson, M., Masser, D.W.: Lower bounds for heights on elliptic curves. Math. Z.174, 23–34 (1980)Google Scholar
  2. [Ba] Baker, A.: On the periods of the Weierstrass ℘-function. Symposia Math. Vol. IV, INDAM Rome 1968, Academic Press, London 1970, pp. 155–174Google Scholar
  3. [BM] Brownawell, W.D., Masser, D.W.: Multiplicity estimates for analytic functions I. J. Reine Angew. Math.314, 200–216 (1979)Google Scholar
  4. [Ca] Cassels, J.W.S.: An introduction to the geometry of numbers. Berlin Göttingen Heidelberg: Springer 1959Google Scholar
  5. [CC] Chudnovsky, D.V., Chudnovsky, G.V.: Padé approximations and algebraic geometry. Proc. Natl. Acad. Sci. USA82, 2212–2216 (1985)Google Scholar
  6. [FP] Faisant, A., Philibert, G.: Quelques résultats de transcendance liés á l'invariant modulairej. J. Number Theory25, 184–200 (1987)Google Scholar
  7. [K] Kolchin, E.R.: Algebraic groups and algebraic dependence. Am. J. Math.90, 1151–1164 (1968)Google Scholar
  8. [La] Laurent, M.: Une nouvelle démonstration du théorème d'isogénie, d'après D.V. et G.V. Choodnovsky, Séminaire de Théorie de Nombres de Paris 1985–6, Boston Basel Stuttgart, Birkhäuser, 1987, pp. 119–131Google Scholar
  9. [Lo] Loxton, J.H.: Some problems involving powers of integers. Acta Arith.46, 113–123 (1986)Google Scholar
  10. [M] Masser, D.W.: Counting points of small height on elliptic curves. Bull. Soc. Math. Fr. (to appear)Google Scholar
  11. [MW1] Masser, D.W., Wüstholz, G.: Fields of large transcendence degree generated by values of elliptic functions. Invent. Math.72, 407–464 (1983)Google Scholar
  12. [MW2] Masser, D.W., Wüstholz, G.: Zero estimates on group varieties II. Invent. Math.80, 233–267 (1985)Google Scholar
  13. [MW3] Masser, D.W., Wüstholz, G.: Some effective estimates for elliptic curves, to appear in the Proceedings of the 1988 Erlangen Workshop on Arithmetic Complex Manifolds. (Lect. Notes Math., Berlin Heidelberg New York: Springer, to appear)Google Scholar
  14. [P] Philippon, P.: Lemmes de zéros dans les groupes algébriques. Bull. Soc. Math. Fr.114, 355–383 (1986)Google Scholar
  15. [S] Silverman, J.H.: The arithmetic of elliptic curves. New York Berlin Heidelberg: Springer 1986Google Scholar
  16. [V] Vélu, J.: Isogénies entre coubes elliptiques. C.R. Acad. Sci. Paris A273, 238–241 (1973)Google Scholar
  17. [Wa] Waldschmidt, M.: Nombres transcendants et groupes algébriques. Astérisque69–70 (1979)Google Scholar
  18. [Wü 1] Wüstholz, G.: Multiplicity estimates on group varieties. Ann. Math.129, 471–500 (1989)Google Scholar
  19. [Wü 2] Wüstholz, G.: Zum Periodenproblem. Invent. Math.78, 381–391 (1984)Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • D. W. Masser
    • 1
  • G. Wüstholz
    • 2
  1. 1.Department of MathematicsUniversity of MichiganAnn ArborUSA
  2. 2.Department für MathematikETH-ZentrumZürichSwitzerland

Personalised recommendations