Advertisement

Celestial mechanics

, Volume 1, Issue 1, pp 110–126 | Cite as

Perturbations in rectangular coordinates by iteration

  • R. Broucke
Article

Abstract

An investigation has been made on computing orbits with Picard's method of successive approximations. The perturbations are integrated in the form of a general displacement from a fixed Keplerian reference orbit. Several variation-of-parameters methods are obtained for the integration of the displacement equation. These variation-of-parameters methods could be used as special perturbation or general perturbation methods. The present paper investigates the applications as iterative numerical perturbation techniques. Four different formulations are proposed. They have been implemented on a computer with Chebychev series and their respective advantages and disadvantages are analyzed. Connections with other known perturbation methods are also described.

Keywords

Perturbation Method Successive Approximation Perturbation Technique General Displacement General Perturbation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Battin, R. H.: 1964,Astronautical Guidance, McGraw-Hill, New York.Google Scholar
  2. Broucke, R.: 1968a, ‘Computation of Perturbations in Rectangular Coordinates’, JPL Space Programs Summary No. 37-49, Vol. III, pp. 31–40, Jet Propulsion Laboratory, Pasadena, Calif.Google Scholar
  3. Broucke, R.: 1968b, ‘On the Partial Derivatives of the Two-Body Problem’, JPL Space Programs Summary No. 37-52, Vol. III, pp. 2–9, Jet Propulsion Laboratory, Pasadena, Calif.Google Scholar
  4. Brouwer, D.: 1944, ‘Integration of the Equations of General Planetary Theory in Rectangular Coordinates’,Astron. J. 51, 37–43.Google Scholar
  5. Brouwer, D. and Clemence, G. M.: 1961,Methods of Celestial Mechanics, Academic Press, New York.Google Scholar
  6. Carpenter, L.: 1966,Planetary Perturbations in Chebychev Series, NASA TN D-3168, National Aeronautics and Space Administration, Washington, D.C.Google Scholar
  7. Danby, J. M. A.: 1962, ‘Integration of the Equations of Planetary Motion in Rectangular Coordinates’,Astron. J. 65, 287–299.Google Scholar
  8. Dziobek, O.: 1962,Mathematical Theories of Planetary Motions, Dover Publications, New York.Google Scholar
  9. Encke, J. F.: 1854, ‘Über die allgemeinen Störungen der Planeten’, inBerliner Astronomisches Jahrbuch für 1857, Berlin, pp. 319–397.Google Scholar
  10. Goodyear, W. H.: 1965, ‘A General Method of Variation of Parameters for Numerical Integration’,Astron. J. 70, 524–526.Google Scholar
  11. Hansen, P. A.: 1857, ‘Auseinandersetzung einer zweckmässigen Methode zur Berechnung der absoluten Störungen der kleinen Planeten. Part One’,Abhandl. Ges. Wiss. 5, 43–218.Google Scholar
  12. Herrick, S.: 1965, ‘Universal Variables’,Astron. J. 70, 309–315.Google Scholar
  13. Hill, G. W.: 1874, ‘A Method of Computing Absolute Perturbations’,Astron. Nachr. 83, 209–224. (Sce also Hill's collected mathematical works, pp. 151–166.)Google Scholar
  14. Ince, E. L.: 1965,Ordinary Differential Equations, Dover Publications, New York.Google Scholar
  15. Laplace, S.: 1799,Mécanique Céleste, Vol. 1. Translation available asCelestial Mechanics, Chap. 6, pp. 504–515, translated by N. Bowditch, 1829.Google Scholar
  16. Lubowe, A. G.: 1965, ‘Order of a Perturbation Method’,AIAA J. 3, 568–570.Google Scholar
  17. Musen, P.: 1963, ‘On the General Perturbations of Rectangular Coordinates’,J. Geophys. Res. 68, 2727–2734.Google Scholar
  18. Musen, P.: 1964,On the Application of Pfaff's Method in the Theory of Variation of Astronomical Constants, NASA TN, D-2301.Google Scholar
  19. Pines, S.: 1961, ‘Variation of Parameters for Elliptic and Near Circular Orbits’,Astron. J. 66.Google Scholar

Copyright information

© D. Reidel Publishing Company 1969

Authors and Affiliations

  • R. Broucke
    • 1
  1. 1.Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaUSA

Personalised recommendations