Advertisement

Celestial mechanics

, Volume 39, Issue 4, pp 365–406 | Cite as

The critical inclination in artificial satellite theory

  • Shannon L. Coffey
  • André Deprit
  • Bruce R. Miller
Article

Abstract

Certain it is that the critical inclination in the main problem of artificial satellite theory is an intrinsic singularity. Its significance stems from two geometric events in the reduced phase space on the manifolds of constant polar angular momentum and constant Delaunay action. In the neighborhood of the critical inclination, along the family of circular orbits, there appear two Hopf bifurcations, to each of which there converge two families of orbits with stationary perigees. On the stretch between the bifurcations, the circular orbits in the planes at critical inclinmation are unstable. A global analysis of the double forking is made possible by the realization that the reduced phase space consists of bundles of two-dimensional spheres. Extensive numerical integrations illustrate the transitions in the phase flow on the spheres as the system passes through the bifurcations.

Keywords

Manifold Angular Momentum Phase Space Hopf Bifurcation Global Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abraham, R., and Marsden, B.: 1978,Foundations of Mechanics, The Benjamin/Cummings Publishing Company, Inc, Reading, MA.Google Scholar
  2. Aksnes, K.: 1965,Astroph. Norv. 10, 69–77.Google Scholar
  3. Aksnes, K.: 1966,Astroph. Norv. 10, 149–169.Google Scholar
  4. Aksnes, K.: 1970,Astron. J. 75, 1066–1076.Google Scholar
  5. Allan, R. R.: 1970,Celest. Mech. 2, 121–122Google Scholar
  6. Aoki, S.: 1962,Astron. J. 67, 571–572.Google Scholar
  7. Aoki, S.: 1963a,Astron. J. 68, 271–272.Google Scholar
  8. Aoki, S.: 1963b,Astron. J. 68, 355–365.Google Scholar
  9. Aoki, S.: 1963c,Astron. J. 68, 365–381.Google Scholar
  10. Brouwer, D.: 1946,Astron. J. 51, 223–231.Google Scholar
  11. Brouwer, D.: 1958,Astron. J. 63, 133–138.Google Scholar
  12. Brouwer, D.: 1959,Astron. J. 64, 378–397.Google Scholar
  13. Chapront, J.: 1965, C. R. Acad. Sc. Paris260A, 2131–2134.Google Scholar
  14. Cid, R., Ferrer, S. and Sein-Echaluce, M.L.: 1986,Celest. Mech. 38, 191–205.Google Scholar
  15. Cid, R., and Lahulla, J. F.: 1969,Publ. Rev. Ac. Cienc. Zaragoza 24, 159–165.Google Scholar
  16. Cid, R., and Lahulla, J. F., 1971,Publ. Rev. Ac. Cienc. Zaragoza 26, 333–343.Google Scholar
  17. Cushman, R.: 1983,Celest. Mech. 31, 401–429.Google Scholar
  18. Cushman, R.: 1984, inDifferential Geometric Methods in Mathematical Physics, ed. S. Sternberg, D. Reidel Publishing Company, Dordrecht, 125–144.Google Scholar
  19. Cushman, R.: 1986, Notes for a manuscript to appear as a report of the Mathematisch Instittuut, Rijksuniversiteit Utrecht, The Netherlands.Google Scholar
  20. Dahl, O. J., and Nygaard, K.: 1966,Comm. ACM 9, 671–678.Google Scholar
  21. Delos, J.B., Knudson, S.K., and D.W. Noid: 1983a,Phys. Rev. Lett. 50, 579–583.Google Scholar
  22. Delos, J.B., Knudson, S.K., and D.W. Noid: 1983b,Phys. Rev. A 28, 7–20.Google Scholar
  23. Deprit, A.: 1969,Celest. Mech. 1, 12–30.Google Scholar
  24. Deprit, A.: 1981,Celest. Mech. 24, 111–153.Google Scholar
  25. Deprit, A.: 1982,Celest. Mech. 26, 9–21.Google Scholar
  26. Deprit, A.: 1983,Celest. Mech. 29, 229–247.Google Scholar
  27. Deprit, A.: 1984,The Big Bang and Georges Lemaître, ed. A. Berger, D. Reidel Publishing Company, Dordrecht, 151–180.Google Scholar
  28. Deprit, A., and Henrard, J.: 1968, A Manifold of Periodic Orbits,Advances in Astronomy and Astrophysics 6, 1–124.Google Scholar
  29. Deprit, A., and Richardson, D.: 1982,Celest. Mech. 28, 253–273.Google Scholar
  30. Fock, V.: 1936,Z. Physik 98, 10–154.Google Scholar
  31. Garfinkel, B.: 1959,Astron. J. 64, 353–367.Google Scholar
  32. Garfinkel, B.: 1969,Celest. Mech. 1, 11.Google Scholar
  33. Garfinkel, B.: 1960,Astron. J. 65, 624–627.Google Scholar
  34. Garfinkel, B.: 1972,Celest. Mech. 5, 189–203.Google Scholar
  35. Garfinkel, B.: 1973a,Celest. Mech. 7, 205–224.Google Scholar
  36. Garfinkel, F. T.: 1965,Astronautica Acta 11, 196–201.Google Scholar
  37. Herget, P. and Musen, P.: 1959,Astron. J. 63, 430–433.Google Scholar
  38. Hori, G.: 1960a,Astron. J. 65, 53.Google Scholar
  39. Hori, G.: 1960b,Astron. J. 65, 291–300.Google Scholar
  40. Hough, M.E.: 1981,Celest. Mech. 25, 137–157.Google Scholar
  41. Hughes, S.: 1981,Celest. Mech. 25, 235–266.Google Scholar
  42. Izsak, I.: 1963,The Use of Artificial Satellites for Geodesy, ed. G. Veis, North-Holland Publishing Company, Amsterdam, 17–40.Google Scholar
  43. Jupp, A.: 1975,Celest. Mech. 11, 361–378.Google Scholar
  44. Jupp, A. 1980,Celest. Mech 21, 361–393.Google Scholar
  45. Kikuchi, S.: 1967,Astronom. Nachr. 289, 241–245.Google Scholar
  46. Kozai, Y.: 1963,Publ. Astron. Soc. Japan,15, 301–312.Google Scholar
  47. Krause, H. G. L.: 1952, “Die Säkularstörungen einer Aussenstationsbahn,” inProbleme aus der Astronnautischen Grundlagenforschung, ed. H. H. Kölle,Vortrage III Internationalen Astronautischen Kongress, Stuttgart 1–6 September 1952, 161–173.Google Scholar
  48. Lyddane, R.H. and Cohen, C.: 1978,Celest. Mech 18, 233–236.Google Scholar
  49. Lubowe, A. G.: 1969a,Celest. Mech. 1, 6–10.Google Scholar
  50. Lubowe, A. G.: 1969b,Celest. Mech. 1, 143.Google Scholar
  51. NcCarthy, J., Abrahams, P.W., Edwrards, D. J., Hart, T. P., and Levin, M. I.: 1962,LISP 1.5 Programmer's Manual, The MIT Press, Cambridge, MAGoogle Scholar
  52. Marsden, J. and Weinstein, A.: 1974,Rep. Math. Phys.,5, 121–130.Google Scholar
  53. Mathlab Group The: 1983,MACSYMA, Version Ten, Laboratory for Computer Science, M.I.T., Cambridge, MA.Google Scholar
  54. Message, P.J., Hori, G., and Garfinkel, B.: 1962,The Observatory,82, 168–170.Google Scholar
  55. Meyer, K.R.,: 1973, inDynamical Systems, ed. M. M.Peixoto, Academic Press, New York, 259–272.Google Scholar
  56. Miller, B. R., and Deprit, A.: 1986, to appear in the proceedings of the 1986 Conference on Conference on Computers and Mathematics, Stanford University, Palo Alto, CA, July-August 1986.Google Scholar
  57. Moses, J.: 1974, “MACSYMA-The Fifth Year,” Proceedings of the EUROSAM conference,ACM SIGSAM Bulletin, Auguat 1974.Google Scholar
  58. Orlov, A. A.: 1953,Soob3eni8 Gosudarstvennogo Astronomiheskogo Instituta imeni P. K. Wternberga,33, 3–38.Google Scholar
  59. Orlov, A. A.: 1954,Trydy Gosudarstvennogo Astronomiheskogo Instituta imeni P. K. Wternberga,34, 139–153.Google Scholar
  60. Petty, C. M., and Breakwell, J. V.: 1960,Journal of the Franklin Institute 270, 259–282.Google Scholar
  61. Petty, C. M., and Breakwell, J. V.: 1960,Journal of the Franklin Institute 270, 259–282.Google Scholar
  62. Rand, R. H.: 1984,Computer Algebra in Applied Mathematics. An Introduction to MACSYMA, Pitnam Advanced Publishing Program, Boston, MA.Google Scholar
  63. Roberson, R. E.: 1957,Journal of the Franklin Institute 264, 161–202 and 269–285.Google Scholar
  64. Rom, A.: 1970,Celest. Mech. 1, 301–319.Google Scholar
  65. Rom, A.: 1971,Celest. Mech. 3, 331–345.Google Scholar
  66. Sloane, N. J. A.: 1986,Not. Amer. Math. Soc. 33, 40–43.Google Scholar
  67. Smith, J. C.: 1986,Paper AIAA-86-2069-CP, AIAA/AAS Astrodynamics Conference, Williamsburg, VA, August 18–20, 1986.Google Scholar
  68. Stefik, M., and Bobrow, D. G.: 1984,The AI magazine (no vol. nr), 40–62.Google Scholar
  69. Sterne, T. E.: 1957,Astron. J. 63, 28–40.Google Scholar
  70. Sterne, T. E.: 1960,An Introduction to Celestial Mechanics, Interscience Publishers, Inc., New York.Google Scholar
  71. Strubble, R. A.: 1960,Arch. Rational Mech. Anal. 7, 87–104.Google Scholar
  72. Tisserand, F.: 1868,J. Math. pures et appliquées 13, 255–303.Google Scholar
  73. Winston P., H., and Horn, B. K. P.: 1984,LISP, 2nd ed. Addison-Wesley Publishing Company, Reading, MA.Google Scholar
  74. Zeis, E.: 1978,A Computerized Algebraic Utility for the Construction of Non Singular Satellite Theory. M. S. Thesis, Massachusetts Institute of Technology, Cambridge, MA.Google Scholar
  75. Zeis, E., and Cefola, P.: 1978,J. Guidance and Control 3, 48–54.Google Scholar

Copyright information

© D. Reidel Publishing Company 1986

Authors and Affiliations

  • Shannon L. Coffey
    • 1
  • André Deprit
    • 1
  • Bruce R. Miller
    • 1
  1. 1.National Bureau of StandardsGaithersburgU.S.A.

Personalised recommendations