Celestial mechanics

, Volume 3, Issue 1, pp 3–66 | Cite as

A semi-analytic theory for the motion of a lunar satellite

  • Giorgio E. O. Giacaglia
  • James P. Murphy
  • Theodore L. Felsentreger


A semi-analytical solution to the problem of the motion of a satellite of the moon is presented. Perturbative effects which are considered include those due to the attraction of the moon, earth, and sun, the non-sphericity of the moon's gravitational field, coupling of lower-order terms, solar radiation pressure, and physical libration. Short-period terms and intermediate-period terms, terms with the period of the moon's longitude, are produced by means of von Zeipel's method; it is proposed to obtain the secular perturbations, and those depending only on the argument of perilune, by numerical integration of the equations of motions. The short-period terms and intermediate-period terms are developed up to second order, where first order is 10−2. The secular perturbations and perturbations dependent on the argument of perilune are obtained to third order.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Brouwer, D.: 1959,Astron. J. 64, 378–397.Google Scholar
  2. Brouwer, D. and Clemence, G.: 1961,Methods of Celestial Mechanics, Academic Press, New York.Google Scholar
  3. Jeffreys, Sir Harold: 1967,Proc. Roy. Soc. London, Ser. A, 1446, 296, 245–247.Google Scholar
  4. Kozai, Y.: 1963,J. Astron. Soc. Japan 15, 301–312.Google Scholar
  5. Moulton, F. R., 1914,An Introduction to Celestial Mechanics, The Macmillan Company, New York.Google Scholar
  6. Oesterwinter, C.: 1966, The Motion of a Lunar Satellite, U.S. Naval Weapons Lab. Tech. Rept. No. 2050.Google Scholar
  7. Oesterwinter, C.: 1966, ‘Motion of a Lunar Satellite’,Astron. J. 71, 987–989, December.Google Scholar


  1. Akim, E. L.: 1966, ‘Determination of the Gravitational Field of the Moon by the Motion of AMS Luna-10’,Dokl. Akad. Nauk SSSR, Mekhanika,170, 799–802.Google Scholar
  2. Lorell, J. and Sjogren, W. L.: 1967,Space Programs Summary No. 37-46, Jet Propulsion Laboratory, Pasadena, Calif., Vol. IV, p. 1, August 31.Google Scholar
  3. Tolson, R. H. and Gapcynski, J. P.: 1967, ‘An Analysis of the Lunar Gravitational Field as Obtained from Lunar Orbiter Tracking Data’, presented at the IQSY/COSPAR Assemblies, London, England, July 17–28.Google Scholar
  4. Plummer, H. C.: 1966,An Introductory Treatise on Dynamical Astronomy, Dover Publications, New York.Google Scholar
  5. Giacaglia, G., Murphy, J., and Felsentreger, T.: 1965, The Motion of a Satellite of the Moon, NASA Technical Memorandum X-55295, November.Google Scholar
  6. Kozai, Y.: 1962,Astron. J. 67, 591–598.Google Scholar
  7. Muller, P. M. and Sjogren, W. L.: 1968, ‘Mascons: Lunar Mass Concentrations’,Science 161, 680–684.Google Scholar
  8. Gottlieb, P. and Laing, P.; 1969, ‘Mass Distributions Inferred from Lunar Orbiter Tracking Data’,Trans. Amer. Geophys. Union 50, 124.Google Scholar
  9. Murphy, J. P. and Siry, J. W.: 1969, Lunar Mascon Evidence from Apollo Orbits, NASA Technical Memorandum X-63652, July; alsoPlanetary Space Sci., in press.Google Scholar
  10. Felsentreger, T. L., Murphy, J. P., Ryan, J. W., and Salter, L. M.: 1969, Lunar Gravity Fields Determined from Apollo 8 Tracking Data, NASA Technical Memorandum X-63666, July.Google Scholar

Copyright information

© D. Reidel Publishing Company 1970

Authors and Affiliations

  • Giorgio E. O. Giacaglia
    • 1
  • James P. Murphy
    • 2
  • Theodore L. Felsentreger
    • 2
  1. 1.Yale UniversityNew HavenU.S.A.
  2. 2.Goddard Space Flight CenterGreenbeltU.S.A.
  3. 3.University of São PauloBrazil

Personalised recommendations