Celestial mechanics

, Volume 26, Issue 4, pp 361–382 | Cite as

On the secular decrease in the semimajor axis of Lageos's orbit

  • David Parry Rubincam


The semimajor axis of the Lageos satellite's orbit is decreasing secularly at the rate of 1.1 mm day−1. Ten possible mechanisms are investigated to discover which one (s), if any, might be causing the orbit to decay. Six of the mechanisms, resonance with the Earth's gravitational field, gravitational radiation, the Poynting-Robertson effect, transfer of spin angular momentum to the orbital angular momentum, drag from near-earth dust, and atmospheric drag by neutral hydrogen are ruled out because they are too small or require unacceptable assumptions to account for the observed rate of decay. Three other mechanisms, the Yarkovsky effect, the Schach effect, and terrestrial radiation pressure give perturbations whose characteristic signatures do not agree with the observed secular decrease (terrestrial radiation pressure appears to be too small in any case); hence they are also ruled out. Charged particle drag with the ions at Lageos's altitude is probably the principal cause of the orbital decay. An estimate of charged particle drag based upon laboratory experiments and satellite measurements of ion number densities accounts for 60 percent of the observed rate of decrease in the semimajor axis, assuming a satellite potential of −1V. This figure is in good agreement with other estimates based on charge drag theory. A satellite potential of −1.5V will explain the entire decay rate. Atmospheric drag from neutral hydrogen appears to be the next largest effect, explaining about 10 percent of the observed orbital decay rate.


Angular Momentum Orbital Angular Momentum Semimajor Axis Gravitational Radiation Neutral Hydrogen 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Afonso, G., Barlier, F., Berger, C., and Mignard, F.: 1980,Compt. Rend. Acad. Sci. Paris 290B, 445.Google Scholar
  2. Allan, R. R.: 1967,Planetary Space Sci. 15, 53.Google Scholar
  3. Blanco, V. M. and McCuskey, S. W.: 1961,Basic Physics of the Solar System, Addison-Wesley, Reading, Mass. U.S.A.Google Scholar
  4. Boudon, Y., Barlier, F., Bernard, A., Juillerat, R., Mainguy, A. M., and Walch, J. J.: 1979,Acta Astron. 6, 1387.Google Scholar
  5. Brownlee, D. E.: 1979,Rev. Geophys. Space Phys. 17, 1735.Google Scholar
  6. Chamberlain, J. W.: 1963,Planetary Space Sci. 11, 901.Google Scholar
  7. Chamberlain, J. W.: 1978,Theory of Planetary Atmospheres, Academic Press, New York.Google Scholar
  8. Chappell, C. R., Harris, K. K., and Sharp, G. W.: 1970,J. Geophys. Res. 75, 50.Google Scholar
  9. Chopra, K. P.: 1961,Rev. Mod. Phys. 33, 159 and 624.Google Scholar
  10. Cook, G. E.: 1965,Planetary Space Sci. 13, 929.Google Scholar
  11. Fechtig, H., Grun, E., and Morfill, G.: 1979,Planetary Space Sci. 27, 511.Google Scholar
  12. Gaposchkin, E. M.: 1979,Lageos Orbital Analysis in Support of Validation, Smithsonian Astrophys. Report, April 1979.Google Scholar
  13. Garrett, H. B., Schwank, D. C., Higbie, P. R., and Baker, D. N.: 1980,J. Geophys. Res. 85, 1155.Google Scholar
  14. Goldstein, H.: 1950,Classical Mechanics, Addison-Wesley, Reading, Mass., U.S.A.Google Scholar
  15. Holter, O. and Kildal, A.: 1973, in A. Egeland, O. Holter, and A. Omholt (eds.),Cosmical Geophysics, Universitetsforlaget, Oslo, p. 247.Google Scholar
  16. Hughes, D. W.: 1975, in M. J. Rycroft (ed.),Space Research XV, Akademie-Verlag, Berlin, p. 531.Google Scholar
  17. Jacchia, L. G.: 1977,Thermospheric Temperature, Density, and Composition: New Models, Smithsonian Astrophys. Obs. Spec. Rep. No. 375.Google Scholar
  18. Jastrow, R. and Pearse, C. A.: 1957,J. Geophys. Res. 62, 413.Google Scholar
  19. Kaula, W. M.: 1966,Theory of Satelite Geodesy, Blaisdell, Waltham, Mass. U.S.A.Google Scholar
  20. Knechtel, E. D. and Pitts, W. C.: 1964,AIAA J. 2, 1148.Google Scholar
  21. Knechtel, E. D. and Pitts, W. C.: 1965,Experimental Investigation of Electric Drag on Spherical Sattellite Models, NASA TN D-2619, February 1965.Google Scholar
  22. Lautman, D. A.: 1977a,Celest. Mech. 15, 387.Google Scholar
  23. Lautman, D. A.: 1977b,Celest. Mech. 16, 3.Google Scholar
  24. Lovell, B.: 1954,Meteor Astronomy, Cambridge Univ. Press, London.Google Scholar
  25. Mignard, F.: 1980, paper presented at the Space Geodesy Colloquium, Cannes, France, November 1980.Google Scholar
  26. O'Keefe, J. A.: 1980,Nature 285, 309.Google Scholar
  27. Öpik, E. J.: 1951,Proc. Roy. Irish Acad. 54A, 165.Google Scholar
  28. Peters, P. C.: 1964,Phys. Rev. 136, B1224.Google Scholar
  29. Prior, E. J.: 1970, in B. Morando (ed.),Dynamics of Satellites 1969, Springer-Verlag, Berlin, p. 303.Google Scholar
  30. Reitz, J. R. and Milford, F. J.: 1967,Foundations of Electromagnetic Theory, Second edition, Addison-Wesley, Reading, Mass., U.S.A.Google Scholar
  31. Robertson, H. P.: 1937,Monthly Notice Roy. Astron. Soc. 97, 423.Google Scholar
  32. Rubincam, D. P.: 1980,Geophys. Res. Letters 7, 468.Google Scholar
  33. Russell, C. T.: 1972, in E. R. Dyer (ed.),Critical Problems of Magnetospheric Physics, National Academy of Sciences, Washington D.C., U.S.A., p. 1.Google Scholar
  34. Samir, U.: 1973,J. Astronaut. Sci. 20, 347.Google Scholar
  35. Samir, U., Brace, L. H., and Brinton, H. C.: 1979,Geophys. Res. Letters 6, 101.Google Scholar
  36. Saslaw, W. C.: 1978,Astrophys. J. 226, 240.Google Scholar
  37. Saslaw, W. C.: 1979,Astrophys. J. 228, 555.Google Scholar
  38. Sehnal, L.: 1970, in B. Morando (ed.),Dynamics of Satellites 1969, Springer-Verlag, Berlin, p. 284.Google Scholar
  39. Shapiro, I. I.: 1963, in M. Roy, (ed.),Dynamics of Satellites 1962, Springer-Verlag, Berlin, p. 257.Google Scholar
  40. Shapiro, I. I., Lautman, D. A., and Colombo, G.: 1966,J. Geophys. Res. 71, 5695.Google Scholar
  41. Smith, D. E.: 1970, in B. Morando (ed.),Dynamics of Satellites 1969, Springer-Verlag, Berlin, p. 284.Google Scholar
  42. Smith, D. E. and Dunn, P.: 1980,Geophys. Res. Letters 7, 437.Google Scholar
  43. Smythe, W. R.: 1950,Static and Dynamic Electricity, Second edition, McGraw-Hill, New York.Google Scholar
  44. Soter, S., Burns, J. A., and Lamy, P. L.: 1977, in A. Delsemme (ed.),Comets, Asteroids, and Meteorites, Univ. of Ohio Pr., p. 121.Google Scholar
  45. Stacey, F. D.: 1977,Physics of the Earth, Second edition, Wiley, New York.Google Scholar
  46. Szebehely, V.: 1980, papér presented at COSPAR Meeting, Budapest, Hungary, June 1980.Google Scholar
  47. Taylor, J. H., Fowler, L. A., and McCulloch, P. M.: 1979,Nature 277, 437.Google Scholar
  48. Wyatt, S. P.: 1963, in M. Roy (ed.),Dynamics of Satellites 1962, Springer-Verlag, Berlin, p. 180.Google Scholar
  49. Zonov, Y. U.: 1961, in L. V. Kurnosova (ed.),Artificial Earth Satellites, Plenum Press, New York, p. 1699.Google Scholar

Copyright information

© D. Reidel Publishing Co 1982

Authors and Affiliations

  • David Parry Rubincam
    • 1
  1. 1.Goddard Space Flight CenterGreenbeltUSA

Personalised recommendations