Mathematical Notes

, Volume 51, Issue 1, pp 74–76 | Cite as

Rationality construction of fields of invariants of some finite four-dimensional linear groups associated with Fano threefolds

  • I. Ya. Kolpakov-Miroshnichenko
  • Yu. G. Prokhorov


Linear Group Rationality Construction Fano Threefolds 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    H. F. Blichfeldt, Finite Collineation Groups, University of Chicago Press, Chicago (1917).Google Scholar
  2. 2.
    I. Ya. Kolpakov-Miroshnichenko and Yu. G. Prokhorov, “Rationality of the field of invariants of a faithful four-dimensional representation of the icosahedral group,” Mat. Zametki,41, No. 4, 479–483 (1987).Google Scholar
  3. 3.
    Takashi Maeda, “catNoether's problem for A5,” Preprint, Hiroshima University, Hiroshima (1988).Google Scholar
  4. 4.
    T. Springer, Invariant Theory, Springer, Berlin (1977) [Russian translation: Mir, Moscow (1981)].Google Scholar
  5. 5.
    S. Mukai and H. Umemura, “Minimal rational threefolds,” Algebraic Geometry, Proceedings, 1982, M. Raynaud and T. Shioda (eds.) (Lect. Notes Math.), 1016, Springer, Berlin (1983), pp. 490–518.Google Scholar
  6. 6.
    V. A. Iskovskikh, Lectures on Three-Dimensional Algebraic Varieties [in Russian], Izd. Mosk. Univ., Moscow (1988).Google Scholar
  7. 7.
    J. Kollar, “Flops,” Nagoya Math. J.,113, 15–36 (1989).Google Scholar
  8. 8.
    S. Mori, “Threefolds whose canonical bundles are not numerically effective,” Ann. Math.,116, 133–176 (1982).Google Scholar
  9. 9.
    K. Takeuchi, “Some birational maps of Fano 3-folds,” Comp. Math.,71, No. 3, 265–283 (1989).Google Scholar
  10. 10.
    F. Klein, Lectures on the Icosahedron, Academic Press, London (1913).Google Scholar
  11. 11.
    A. Tannenbaum, “The Brauer group and unirationality: an example of Artin-Mumford, ” Groupe de Brauer, Proceedings, M. Kervaire and M. Ojangurer (eds.) (Lect. Notes Math.,844), Springer, Berlin (1981), pp. 103–128.Google Scholar
  12. 12.
    V. A. Iskovskikh, “Rational surfaces with a pencil of rational curves and with positive square of the canonical class,” Mat. Sb.,83, No. 1, 90–119 (1970).Google Scholar

Copyright information

© Plenum Publishing Corporation 1992

Authors and Affiliations

  • I. Ya. Kolpakov-Miroshnichenko
    • 1
  • Yu. G. Prokhorov
    • 1
  1. 1.M. V. Lomonosov Moscow State UniversityUSSR

Personalised recommendations